Abstract
Upon infection of the gastric epithelial cells, the Helicobacter pylori cytotoxin-associated gene A (CagA) virulence protein is injected into the epithelial cells via the type IV secretion system (TFSS), which is dependent on cholesterol. Translocated CagA is targeted by the membrane-recruited c-Src family kinases in which a tyrosine residue in the Glu-Pro-Ile-Tyr-Ala (EPIYA)-repeat region, which can be phosphorylated, induces cellular responses, including interleukin-8 (IL-8) secretion and hummingbird phenotype formation. In this study, we explored the role of EPIYA-containing C-terminal domain (CTD) in CagA tethering to the membrane lipid rafts and in IL-8 activity. We found that disruption of the lipid rafts reduced the level of CagA translocation/phosphorylation as well as CagA-mediated IL-8 secretion. By CagA truncated mutagenesis, we identified that the CTD, rather than the N-terminal domain, was responsible for CagA tethering to the plasma membrane and association with detergent-resistant membranes, leading to CagA-induced IL-8 promoter activity. Our results suggest that CagA CTD-containing EPIYAs directly interact with cholesterol-rich microdomains that induce efficient IL-8 secretion in the epithelial cells.
Original language | English |
---|---|
Pages (from-to) | 155-163 |
Number of pages | 9 |
Journal | FEMS Microbiology Letters |
Volume | 323 |
Issue number | 2 |
DOIs | |
State | Published - 10 2011 |
Externally published | Yes |
Keywords
- Cholesterol
- Cytotoxin-associated gene A
- H elicobacter pylori
- Interleukin-8