High accuracy wifi-based human activity classification system with time-frequency diagram cnn method for different places

Lokesh Sharma, Chunghao Chao, Shih Lin Wu*, Mei Chen Li

*Corresponding author for this work

Research output: Contribution to journalJournal Article peer-review

12 Scopus citations

Abstract

Older people are very likely to fall, which is a significant threat to the health. However, falls are preventable and are not necessarily an inevitable part of aging. Many different fall detection systems have been developed to help people avoid falling. However, traditional systems based on wearable devices or image recognition-based have many disadvantages, such as user-unfriendly, privacy issues. Recently, WiFi-based fall detection systems try to solve the above problems. However, there is a common problem of reduced accuracy. Since the system is trained at the original signal collecting/training place, however, the application is at a different place. The proposed solution only extracts the features of the changed signal, which is caused by a specific human action. To implement this, we used Channel State Information (CSI) to train Convolutional Neural Networks (CNNs) and further classify the action. We have designed a prototype to test the performance of our proposed method. Our simulation results show an average accuracy of same place and different place is 93.2% and 90.3%, respectively.

Original languageEnglish
Article number3797
JournalSensors
Volume21
Issue number11
DOIs
StatePublished - 01 06 2021

Bibliographical note

Publisher Copyright:
© 2021 by the authors. Licensee MDPI, Basel, Switzerland.

Keywords

  • Channel state information
  • Device-free
  • Different place
  • Fall detection
  • Wireless

Fingerprint

Dive into the research topics of 'High accuracy wifi-based human activity classification system with time-frequency diagram cnn method for different places'. Together they form a unique fingerprint.

Cite this