Abstract
Purpose: High-mobility group box 1 protein (HMGB1) has been reported to be a potent proangiogenic factor induced by inflammatory stress. In this study, we explore the role of HMGB1 in advanced glycation end products (AGEs)-induced vascular endothelial growth factor A (VEGF-A) production in rat retinal ganglion cell line 5 (RGC-5) cells. Methods: The VEGF-A protein and mRNA levels in conditioned medium of RGC-5 cells incubated with AGE-modified BSA (AGE-BSA) were examined with real-time PCR and enzyme-linked immunosorbent assay (ELISA), and BSAtreated cells were used as controls. The expression of HMGB1, c-Jun N-terminal kinase (JNK), extracellular-signalregulated kinase (ERK), and p38 mitogen-activated protein kinase (p38 MAPK) was assessed with immunofluorescence and western blot analysis. Reactive oxidative species (ROS) were detected with flow cytometry measurements of peroxidedependent oxidation of 2′-7′-dichlorofluorescein-diacetate (DCFH-DA). N-Acetyl-L-cysteine (NAC), glycyrrhizin (GZ), and SP600125 were used to block ROS, HMGB1, and JNK, respectively. Results: Compared with the BSA controls, the RGC-5 cells incubated with AGE-BSA showed a dose-and time-dependent increase in VEGF-A mRNA and VEGF-A protein secretion in the supernatant, with the highest levels achieved at 24 h. AGE-BSA stimulated a significant release of HMGB1 in the supernatant and a significant increase of intracellular ROS production at 3 h. NAC blocked HMGB1 production in a dose-dependent manner. Blocking with GZ, NAC, and JNK significantly suppressed AGE-induced VEGF-A production. Conclusions: HMGB1 is implicated in the production of VEGF-A in retinal ganglion cell line-5 (RGC-5). Blocking HMGB1, ROS, or the JNK pathway may attenuate VEGF-A production, suggesting HMGB1 and related signaling molecules play a role in diabetic retinopathy.
Original language | English |
---|---|
Pages (from-to) | 838-850 |
Number of pages | 13 |
Journal | Molecular Vision |
Volume | 18 |
State | Published - 05 04 2012 |
Keywords
- ACTIVATION
- DEFICIENT MICE
- DIABETIC-RETINOPATHY
- DYSFUNCTION
- EXPRESSION
- HMGB1
- IN-VITRO
- ISCHEMIA-REPERFUSION INJURY
- RAGE
- RECEPTOR