Abstract
Heat shock protein 70 (HSP70) has been shown to be a substrate of Polo-like kinase 1 (PLK1), and it prevents cells arrested in mitosis by arsenic trioxide (ATO) from dying. Here, we report that HSP70 participates in ATO-induced spindle elongation, which interferes with mitosis progression. Our results demonstrate that HSP70 and PLK1 colocalize at the centrosome in ATO-arrested mitotic cells. HSP70 located at the centrosome was found to be phosphorylated by PLK1 at Ser631 and Ser633. Moreover, unlike wild-type HSP70 (HSP70wt) and its phosphomimetic mutant (HSP70SS631,633DD) , a phosphorylation-resistant mutant of HSP70 (HSP70SS631,633AA) failed to localize at the centrosome. ATO-induced spindle elongation was abolished in cells overexpressing HSP70SS631,633AA. Conversely, mitotic spindles in cells ectopically expressing HSP70SS631,633DD were more resistant to nocodazole-induced depolymerization than in those expressing HSP70wt or HSP70SS631,633AA. In addition, inhibition of PLK1 significantly reduced HSP70 phosphorylation and induced early onset of apoptosis in ATO-arrested mitotic cells. Taken together, our results indicate that PLK1-mediated phosphorylation and centrosomal localization of HSP70 may interfere with spindle dynamics and prevent apoptosis of ATO-arrested mitotic cells.
Original language | English |
---|---|
Pages (from-to) | 1711-1723 |
Number of pages | 13 |
Journal | Archives of Toxicology |
Volume | 88 |
Issue number | 9 |
DOIs | |
State | Published - 09 2014 |
Externally published | Yes |
Keywords
- Arsenic trioxide
- Centrosome
- HSP70
- Mitotic arrest
- Mitotic spindle
- PLK1