Abstract
The advent of 6G technology is expected to bring a paradigm shift in the field of wireless communication. With its faster data transfer rates and lower latency, 6G could be an ideal solution for the challenges faced by Wireless Body Area Networks (WBANs) in terms of efficient data bandwidth and edge computing. Smart healthcare systems with 6G-based WBANs might provide more efficient and higher-quality healthcare services. However, 6G-based WBAN healthcare systems might face potential security and safety challenges from cybersecurity threats. This paper will propose an ID-based deniable authentication protocol with key agreement and time-bound properties for 6G-based WBAN healthcare environments by considering user privacy, secure communications, authentication, authorization, and scalability of 6G-based WBANs. As compared with previously proposed protocols, the proposed protocol will achieve the following security requirements: mutual authentication, key agreement for secure communication, deniability, time-bound access privilege control, and identity-based public key management for scalable wearable devices and 6G-based WBAN Service Providers. We proved the claimed security requirements of the proposed protocol by using AVISPA simulation and discussed its computational complexities. As compared with previous works, the proposed protocol can gain better contributions in terms of security requirements and performance evaluations for 6G-based WBAN healthcare environments.
Original language | English |
---|---|
Article number | 2682 |
Journal | Electronics (Switzerland) |
Volume | 12 |
Issue number | 12 |
DOIs | |
State | Published - 06 2023 |
Bibliographical note
Publisher Copyright:© 2023 by the authors.
Keywords
- 6G
- ID-based
- WBAN
- authentication
- deniability
- healthcare environment
- mutual key agreement
- time-bound