Image reconstruction in intravascular photoacoustic imaging

Yae Lin Sheu*, Cheng Ying Chou, Bao Yu Hsieh, Pai Chi Li

*Corresponding author for this work

Research output: Contribution to journalJournal Article peer-review

23 Scopus citations

Abstract

Intravascular photoacoustic (IVPA) imaging is a technique for visualizing atherosclerotic plaques with differential composition. Unlike conventional photoacoustic tomography scanning, where the scanning device rotates around the subject, the scanning aperture in IVPA imaging is enclosed within the imaged object. The display of the intravascular structure is typically obtained by converting detected photoacoustic waves into Cartesian coordinates, which can produce images with severe artifacts. Because the acquired data are highly limited, there does not exist a stable reconstruction algorithm for such imaging geometry. The purpose of this work was to apply image reconstruction concepts to explore the feasibility and efficacy of image reconstruction algorithms in IVPA imaging using traditional analytical formulas, such as a filtered back-projection (FBP) and the lambda-tomography method. Although the closed-form formulas are not exact for the IVPA system, a general picture of and interface information about objects are provided. To improve the quality of the reconstructed image, the iterative expectation maximization and penalized least-squares methods were adopted to minimize the difference between the measured signals and those generated by a reconstructed image. In this work, we considered both the ideal point detector and the acoustic transducers with finite- size aperture. The transducer effects including the spatial response of aperture and acoustoelectrical impulse responses were incorporated in the system matrix to reduce the aroused distortion in the IVPA reconstruction. Computer simulations and experiments were carried out to validate the methods. The applicability and the limitation of the reconstruction method were also discussed.

Original languageEnglish
Article number6039997
Pages (from-to)2067-2077
Number of pages11
JournalIEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control
Volume58
Issue number10
DOIs
StatePublished - 10 2011
Externally publishedYes

Fingerprint

Dive into the research topics of 'Image reconstruction in intravascular photoacoustic imaging'. Together they form a unique fingerprint.

Cite this