Incompatible amount of 3-D and 2-D periodontal attachments on micro-CT scanned premolars

Hsiang Hsi Hong, Adrienne Hong, Yi Fang Huang, Heng Liang Liu

Research output: Contribution to journalJournal Article peer-review

4 Scopus citations


Micro-computed tomography (micro-CT) was employed to relate the root surface area (RSA) to the periodontal attachment levels (PALs) of extracted premolars to diagnose periodontitis. Single-rooted human maxillary and mandibular premolars 31 and 36, respectively, were surveyed by micro-CT and its associated software. RSA levels from the 1st to 10th mm, corono-apically, were analyzed using statistical t tests. The average root length (RL) and RSA of the maxillary and mandibular premolars were significantly different (p < 0.05). Both premolars demonstrated a non-significant RSA percentage comparison at the evaluated PALs. For the 30% coronal 2-D radiographic RL, the 3-D RSAs 3.77 mm and 3.99 mm apical to the cementoenamel junction (CEJ) were 39.48% and 40.65% for maxillary and mandibular premolars, respectively. At the 15% coronal 2-D RL, the 3-D RSA 2 mm apical to the CEJ of the premolars was approximately 21%. At the 50% coronal 2-D RL level, approximately 62% coronal 3-D RSA and 6.5 mm RL decreased. The amount of decrease of the RSA attachment is significant in every 2-mm measurement for both premolars. Sampling periodontal microbial pathogens based on the condition of 2-D radiographic bone and clinical attachment losses without considering 3-D RSA is potentially inadequate and may underestimate the severity of the periodontitis.

Original languageEnglish
Article numbere0193894
JournalPLoS ONE
Issue number3
StatePublished - 03 2018

Bibliographical note

Publisher Copyright:
© 2018 Hong et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.


Dive into the research topics of 'Incompatible amount of 3-D and 2-D periodontal attachments on micro-CT scanned premolars'. Together they form a unique fingerprint.

Cite this