Abstract
Cisplatin (CPT) is an effective anticancer drug that causes cumulative toxicity to normal tissues. It has been suggested that CPT damages normal cells by causing oxidative stress, but it is not known whether it can induce similar oxidative damage to tumor cells. In this study, by using normal human lung fibroblast (W138) cells and SV40-transformed WI38 (VA13) cells as a model, we compared the effect of CPT on cytotoxicity, apoptosis, lipid peroxidation, and mitochondrial gene expression, which could be regulated by oxidative stress, between normal and tumor cells. CPT induced greater growth inhibition and percentage of apoptotic cells in VA13 cells. However, levels of esterified F2-isoprostanes and 4-hydroxy-2-nonenal, two specific products of lipid peroxidation, were increased by CPT in WI38 cells, but not in VA13 cells. Furthermore, the transcript level of mitochondrial 12S rRNA was augmented by CPT in both cells, but to a higher degree in WI38 cells. The data suggest a correlation between lipid peroxidation and cytotoxicity or increased mitochondrial transcript levels in WI38 cells but not in VA13 cells. The results also indicate an altered response of oxidative damage and mitochondrial gene regulation to CPT in the transformed phenotype of WI38 cells.
Original language | English |
---|---|
Pages (from-to) | 39-46 |
Number of pages | 8 |
Journal | Journal of Biochemical and Molecular Toxicology |
Volume | 17 |
Issue number | 1 |
DOIs | |
State | Published - 2003 |
Keywords
- 4-Hydroxy-2-nonenal
- Cisplatin
- F-isoprostanes
- Lipid peroxidation
- Mitochondrial gene expression
- Transformed cells