TY - JOUR
T1 - Inference of Cross-Level Interaction between Genes and Contextual Factors in a Matched Case-Control Metabolic Syndrome Study
T2 - A Bayesian Approach
AU - Wang, Shi Heng
AU - Chen, Wei J.
AU - Chuang, Lee Ming
AU - Hsiao, Po Chang
AU - Liu, Pi Hua
AU - Hsiao, Chuhsing K.
PY - 2013/2/20
Y1 - 2013/2/20
N2 - Genes, environment, and the interaction between them are each known to play an important role in the risk for developing complex diseases such as metabolic syndrome. For environmental factors, most studies focused on the measurements observed at the individual level, and therefore can only consider the gene-environment interaction at the same individual scale. Indeed the group-level (called contextual) environmental variables, such as community factors and the degree of local area development, may modify the genetic effect as well. To examine such cross-level interaction between genes and contextual factors, a flexible statistical model quantifying the variability of the genetic effects across different categories of the contextual variable is in need. With a Bayesian generalized linear mixed-effects model with an unconditional likelihood, we investigate whether the individual genetic effect is modified by the group-level residential environment factor in a matched case-control metabolic syndrome study. Such cross-level interaction is evaluated by examining the heterogeneity in allelic effects under various contextual categories, based on posterior samples from Markov chain Monte Carlo methods. The Bayesian analysis indicates that the effect of rs1801282 on metabolic syndrome development is modified by the contextual environmental factor. That is, even among individuals with the same genetic component of PPARG_Pro12Ala, living in a residential area with low availability of exercise facilities may result in higher risk. The modification of the group-level environment factors on the individual genetic attributes can be essential, and this Bayesian model is able to provide a quantitative assessment for such cross-level interaction. The Bayesian inference based on the full likelihood is flexible with any phenotype, and easy to implement computationally. This model has a wide applicability and may help unravel the complexity in development of complex diseases.
AB - Genes, environment, and the interaction between them are each known to play an important role in the risk for developing complex diseases such as metabolic syndrome. For environmental factors, most studies focused on the measurements observed at the individual level, and therefore can only consider the gene-environment interaction at the same individual scale. Indeed the group-level (called contextual) environmental variables, such as community factors and the degree of local area development, may modify the genetic effect as well. To examine such cross-level interaction between genes and contextual factors, a flexible statistical model quantifying the variability of the genetic effects across different categories of the contextual variable is in need. With a Bayesian generalized linear mixed-effects model with an unconditional likelihood, we investigate whether the individual genetic effect is modified by the group-level residential environment factor in a matched case-control metabolic syndrome study. Such cross-level interaction is evaluated by examining the heterogeneity in allelic effects under various contextual categories, based on posterior samples from Markov chain Monte Carlo methods. The Bayesian analysis indicates that the effect of rs1801282 on metabolic syndrome development is modified by the contextual environmental factor. That is, even among individuals with the same genetic component of PPARG_Pro12Ala, living in a residential area with low availability of exercise facilities may result in higher risk. The modification of the group-level environment factors on the individual genetic attributes can be essential, and this Bayesian model is able to provide a quantitative assessment for such cross-level interaction. The Bayesian inference based on the full likelihood is flexible with any phenotype, and easy to implement computationally. This model has a wide applicability and may help unravel the complexity in development of complex diseases.
UR - http://www.scopus.com/inward/record.url?scp=84874257725&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0056693
DO - 10.1371/journal.pone.0056693
M3 - 文章
C2 - 23437214
AN - SCOPUS:84874257725
SN - 1932-6203
VL - 8
JO - PLoS ONE
JF - PLoS ONE
IS - 2
M1 - e56693
ER -