Integrated biosensing platform based on a 1.74-mW -90-dBm sensitivity dual- mode-operation receiver for IEEE 802.15.6 human body communication standard

Yu Lin Tsou, Cihun Siyong Alex Gong, Nai Chen Cheng, Yu Lee, Christina F. Jou

Research output: Contribution to journalJournal Article peer-review

14 Scopus citations

Abstract

Human body communication (HBC), a technique featuring low conduction loss and low interference by taking the advantages of the nature of body composition, has emerged as one of the most promising techniques toward next-generation wireless body area network (WBAN). The regulation of WBAN, IEEE 802.15.6, concerning the standard of physical layer has also been established in 2012. The intensity of electric field around body is affected by the transmission distance, quality of electrode-skin contact, and so on which results in wide variance in path loss. In addition, according to the measurement results, the equivalent capacitance of electrode-skin interface increases path loss significantly when noncontact transmission happens. To solve the problems, a low-power receiver with dual-mode operation is proposed in this paper. The receiver has been implemented in a standard 0.18- μm CMOS process measurement shows the receiver is fully functional with power consumption <1.75 mW under 1.2 V supply voltage and compatible with IEEE 802.15.6 HBC layer. The chip size is 1.05 mm2. Maximum voltage conversion gain can be 85.5 dB. Experimental sensitivity is up to -90 dBm under an information data rate of 164 kb/s. It has been demonstrated that the receiver provides successful text file transmission through human body with the fabricated sensing electrodes.

Original languageEnglish
Article number6998930
Pages (from-to)3317-3327
Number of pages11
JournalIEEE Sensors Journal
Volume15
Issue number6
DOIs
StatePublished - 01 06 2015

Bibliographical note

Publisher Copyright:
© 2014 IEEE.

Keywords

  • Dual-mode
  • FSDT
  • HBC
  • Receiver
  • WBAN
  • low power
  • sensitivity

Fingerprint

Dive into the research topics of 'Integrated biosensing platform based on a 1.74-mW -90-dBm sensitivity dual- mode-operation receiver for IEEE 802.15.6 human body communication standard'. Together they form a unique fingerprint.

Cite this