Intraprostatic Botulinum Toxin A Injection Inhibits Cyclooxygenase-2 Expression and Suppresses Prostatic Pain on Capsaicin Induced Prostatitis Model in Rat

Yao Chi Chuang*, Naoki Yoshimura, Chao Cheng Huang, Moya Wu, Po Hui Chiang, Michael B. Chancellor

*Corresponding author for this work

Research output: Contribution to journalJournal Article peer-review

89 Scopus citations

Abstract

Purpose: Cyclooxygenase-2 is a key enzyme in the conversion of arachidonic acid to prostaglandins, which are important mediators of inflammation and pain. We investigated the effect of intraprostatic botulinum toxin A administration on pain reaction and cyclooxygenase-2 expression in a capsaicin induced prostatitis model in rats. Materials and Methods: Adult male Sprague-Dawley rats were injected with vehicle or capsaicin (10 mM, 0.1 cc) into the prostate. The nociceptive effects of capsaicin were evaluated for 30 minutes using a behavior approach. The prostate and L6 spinal cord were then removed for histology and cyclooxygenase-2 expression using Western blotting or immunostaining. A second set of animals was injected with botulinum toxin A (5 to 20 U) into the prostate 1 week before intraprostatic injection of capsaicin. Results: Capsaicin induced increased pain behavior and inflammatory reaction. Botulinum toxin A 1 week before treatment dose dependently decreased inflammatory cell accumulation, cyclooxygenase-2 expression and prostatic pain. Botulinum toxin A (20 U) significantly decreased inflammatory cell accumulation, and cyclooxygenase-2 expression in the prostate, ventral horn and dorsal horn of the L6 spinal cord (93.5%, 89.4%, 90.5% and 77.5%, respectively). It decreased pain behavior for eye and locomotion scores (59.5% and 40.0%, respectively). Conclusions: Intraprostatic capsaicin injection activates cyclooxygenase-2 expression in the prostate, and spinal sensory and motor neurons, and it induces prostatic pain. Botulinum toxin A pretreatment could inhibit capsaicin induced cyclooxygenase-2 expression from the peripheral organ to the L6 spinal cord and inhibit prostatic pain and inflammation. This finding suggests a potential clinical benefit of botulinum toxin A for the treatment of nonbacterial prostatitis.

Original languageEnglish
Pages (from-to)742-748
Number of pages7
JournalJournal of Urology
Volume180
Issue number2
DOIs
StatePublished - 08 2008
Externally publishedYes

Keywords

  • Sprague-Dawley
  • botulinum toxin type A
  • capsaicin
  • prostate
  • prostatitis
  • rats

Fingerprint

Dive into the research topics of 'Intraprostatic Botulinum Toxin A Injection Inhibits Cyclooxygenase-2 Expression and Suppresses Prostatic Pain on Capsaicin Induced Prostatitis Model in Rat'. Together they form a unique fingerprint.

Cite this