TY - JOUR
T1 - Large-scale bicortical skull bone regeneration using ex vivo replication-defective adenoviral-mediated bone morphogenetic protein-2 gene-transferred bone marrow stromal cells and composite biomaterials
AU - Chang, Sophia Chia Ning
AU - Lin, Tsung Min
AU - Chung, Hui Ying
AU - Chen, Philip Kuo Ting
AU - Lin, Feng Huei
AU - Lou, Jeuren
AU - Jeng, Long Bin
PY - 2009/12
Y1 - 2009/12
N2 - OBJECTIVE: Bone marrow stromal cells (BMSCs) have great potential in bone repair. We developed an animal model to test the hypothesis that ex vivo gene transfer of human bone morphogenetic protein (BMP)-2 to BMSCs via a replication-defective (E1A-deleted) adenovirus vector (AdV) with appropriate biopolymers would enhance autologous bone formation during repair of a large-scale skull defect. METHODS: Eighteen miniature swine were treated with AdV BMP-2-transduced BMSCs in biopolymer (group 1), BMSCs in biopolymer (group 2), or biopolymer alone (group 3). After 6 months, the swine were killed, and the skull repair was examined by gross pictures, histology, 3-dimensional computed tomography, and biomechanical study. RESULTS: Group 1 showed complete solid bone formation after 6 months, and hematoxylin and eosin staining demonstrated the presence of mature, woven, well-mineralized bone. Computed tomography showed wholesome repair of the skull defect. Statistical analysis demonstrated a significant difference in bone thickness between groups 1 and 2. Biomechanical testing showed a statistically significant difference in the stiffness of new bone formed in group 1 compared with group 2. CONCLUSION: The Ad5 E1A-deleted AdV may be the optimal starting vector in ex vivo gene therapy for benign skeletal diseases. Additionally, the use of the gelatin/tricalcium phosphate ceramic/glutaraldehyde biopolymer with AdV BMP-2 gene transfer strongly enhances the bony healing of critical-size bicortical craniofacial defects. This method can be used by modifying the delivery of constructs to malunion treatment, in regional osteoporosis therapy, and spinal fusion.
AB - OBJECTIVE: Bone marrow stromal cells (BMSCs) have great potential in bone repair. We developed an animal model to test the hypothesis that ex vivo gene transfer of human bone morphogenetic protein (BMP)-2 to BMSCs via a replication-defective (E1A-deleted) adenovirus vector (AdV) with appropriate biopolymers would enhance autologous bone formation during repair of a large-scale skull defect. METHODS: Eighteen miniature swine were treated with AdV BMP-2-transduced BMSCs in biopolymer (group 1), BMSCs in biopolymer (group 2), or biopolymer alone (group 3). After 6 months, the swine were killed, and the skull repair was examined by gross pictures, histology, 3-dimensional computed tomography, and biomechanical study. RESULTS: Group 1 showed complete solid bone formation after 6 months, and hematoxylin and eosin staining demonstrated the presence of mature, woven, well-mineralized bone. Computed tomography showed wholesome repair of the skull defect. Statistical analysis demonstrated a significant difference in bone thickness between groups 1 and 2. Biomechanical testing showed a statistically significant difference in the stiffness of new bone formed in group 1 compared with group 2. CONCLUSION: The Ad5 E1A-deleted AdV may be the optimal starting vector in ex vivo gene therapy for benign skeletal diseases. Additionally, the use of the gelatin/tricalcium phosphate ceramic/glutaraldehyde biopolymer with AdV BMP-2 gene transfer strongly enhances the bony healing of critical-size bicortical craniofacial defects. This method can be used by modifying the delivery of constructs to malunion treatment, in regional osteoporosis therapy, and spinal fusion.
KW - Bone marrow mesenchymal stem cells
KW - E1A-deleted adenovirus
KW - Ex vivo gene therapy
UR - http://www.scopus.com/inward/record.url?scp=74549193473&partnerID=8YFLogxK
U2 - 10.1227/01.NEU.0000345947.33730.91
DO - 10.1227/01.NEU.0000345947.33730.91
M3 - 文章
C2 - 19935005
AN - SCOPUS:74549193473
SN - 1524-4040
VL - 65
SP - ons75-ons82
JO - Neurosurgery
JF - Neurosurgery
IS - 6 SUPPL. 1
ER -