Abstract
The role of nitric oxide (NO) in microcirculation during the development of acute pancreatitis was not clear. An in vivo microscopic technique was used for evaluating leukocyte-endothelial adherence in the pancreatic microcirculation after induction (cerulein) of acute pancreatitis. Microdialysis was performed to detect pancreatic nitrate concentration (NO level) by high-performance liquid chromatography. Cerulein caused significantly reduced flow velocity in 1 h (31%) and increased the number of sticking leukocytes in 2 h; both persisted for at least 3 h. Pancreatic NO level was found to be significantly elevated (2.5-fold) in 1 h and also persisted for 3 h. Both microcirculatory changes and NO elevation were significantly alleviated in cerulein-induced animals pretreated with NO synthase inhibitor (NG-nitro-L-arginine), indicating that elevation of NO could precede and account for a major portion of the observed microcirculatory changes. Furthermore, there was a strong positive correlation between numbers of adherent leukocytes and pancreatic NO level, suggesting that during the development of acute pancreatitis, NO could play an adverse role in microcirculation.
Original language | English |
---|---|
Pages (from-to) | 218-222 |
Number of pages | 5 |
Journal | Shock |
Volume | 10 |
Issue number | 3 |
DOIs | |
State | Published - 09 1998 |