Abstract
The rapid advancement of technology has greatly expanded the capabilities of unmanned aerial vehicles (UAVs) in wireless communication and edge computing domains. The primary objective of UAVs is the seamless transfer of video data streams to emergency responders. However, live video data streaming is inherently latency dependent, wherein the value of the video frames diminishes with any delay in the stream. This becomes particularly critical during emergencies, where live video streaming provides vital information about the current conditions. Edge computing seeks to address this latency issue in live video streaming by bringing computing resources closer to users. Nonetheless, the mobile nature of UAVs necessitates additional trajectory supervision alongside the management of computation and networking resources. Consequently, efficient system optimization is required to maximize the overall effectiveness of the collaborative system with limited UAV resources. This study explores a scenario where multiple UAVs collaborate with end users and edge servers to establish an emergency response system. The proposed idea takes a comprehensive approach by considering the entire emergency response system from the incident site to video distribution at the user level. It includes an adaptive resource management strategy, leveraging deep reinforcement learning by simultaneously addressing video streaming latency, UAV and user mobility factors, and varied bandwidth resources.
Original language | English |
---|---|
Article number | 5076 |
Journal | Sensors |
Volume | 24 |
Issue number | 15 |
DOIs | |
State | Published - 05 08 2024 |
Bibliographical note
Publisher Copyright:© 2024 by the authors.
Keywords
- bandwidth allocation
- edge computing
- resource management
- unmanned aerial vehicle (UAV)
- video data stream