Low Polarization Loss of Long Endurance on Scavenged Ru-Based Electrode Ferroelectric Hf0.5Zr0.5O2by Optimizing TiNxInterfacial Capping Layer and Its Fatigue Mechanism

Asim Senapati, Zhao Feng Lou, Jia Yang Lee, Yi Pin Chen, Shih Yin Huang, Siddheswar Maikap*, Min Hung Lee*, Chee Wee Liu

*Corresponding author for this work

Research output: Contribution to journalJournal Article peer-review

Abstract

Double remnant polarization (2Pr values are increased significantly from 17.1μC/cm2 to 39.9μC/cm2 by reducing the TiNx interfacial capping layer (ICL) thickness from 3 nm to 1 nm in the Ru/TiNx/Hf0.5 Zr0.5O2(HZO)/TiN structure owing to lower monoclinic (m) phase with respect to orthorhombic (o) plus rhombohedral (r) phases. These phases are observed by geometrical phase analysis (GPA) of high-resolution transmission electron microscope (HRTEM) images. An optimized 2 nm TiNx ICL ferroelectric memory shows lowest fatigue and mechanism is higher m-phase starting to grow from the HZO/TiN BE interface, which is evidenced in the HRTEM image after long endurance of 1011 cycles under high ±4 MV/cm, 0.5μs (remaining higher 2Pr value of 20μC/cm2).

Original languageEnglish
Pages (from-to)673-676
Number of pages4
JournalIEEE Electron Device Letters
Volume45
Issue number4
DOIs
StatePublished - 01 04 2024

Bibliographical note

Publisher Copyright:
© 1980-2012 IEEE.

Keywords

  • Electrodes
  • Fatigue
  • fatigue mechanism
  • ferroelectric memory
  • Films
  • furnace annealing
  • Leakage currents
  • long endurance
  • Reservoirs
  • scavenged-Ru based electrode
  • Tin
  • TiN<sub xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">x</sub> interfacial capping layer
  • Zirconium
  • TiN interfacial capping layer

Fingerprint

Dive into the research topics of 'Low Polarization Loss of Long Endurance on Scavenged Ru-Based Electrode Ferroelectric Hf0.5Zr0.5O2by Optimizing TiNxInterfacial Capping Layer and Its Fatigue Mechanism'. Together they form a unique fingerprint.

Cite this