MAP3K8 is a potential therapeutic target in airway epithelial inflammation

Chih Yung Chiu, Saffron A.G. Willis-Owen, Kenny C.C. Wong, Stuart N. Farrow, William O.C. Cookson, Miriam F. Moffatt, Youming Zhang*

*Corresponding author for this work

Research output: Contribution to journalJournal Article peer-review

6 Scopus citations

Abstract

BACKGROUND: We have previously discovered clusters of sequentially negative and positive modulators of acute inflammation during cytokine stimulation in epithelial cells and identified potential targets for therapy within these clusters. MAP3K8 is a druggable kinase that we found to be a hub of a principal interaction network. We describe here the results of MAP3K8 knockdown in the A549 lung cancer cell line, the BEAS-2B epithelial cell line and normal human bronchial epithelial (NHBE) cells following IL-1β stimulation. We analysed signalling transduction and global gene expression after IL-1β stimulation with and without MAP3K8 knockdown, quantifying levels of the inflammatory cytokines IL-6, IL-8 and RANTES levels by qPCRs and/or by ELISAs. We also examined potential small molecule inhibitors for MAP3K8 in the same models.

RESULTS: IL-1β significantly and consistently increased MAP3K8 expression after 2 h in A549, BEAS-2B and NHBE cells. Phosphorylation of MAP3K8 occurred at 20 min after IL-1β stimulation and MAP3K8 protein was degraded at 30 min. MAP3K8 knockdown significantly reduced IL-6, IL-8 levels after IL-1β stimulation and yielded a 10-fold enhancement of the anti-inflammatory effects of dexamethasone. Phosphorylation of ERK1/2 (P-ERK1/2) and phosphorylation of SAPK/JNK (P-SAPK/JNK) decreased at 30 min after IL-1β stimulation with MAP3K8 knockdown. The combination of dexamethasone and MAP3K8 knockdown resulted in greater inhibition of phosphorylated ERK1/2 and SAPK/JNK. Nineteen genes including MMP1, MMP3, MMP10, ITGB8, LAMC2 and PLAT (P corrected < 0.01 respectively) demonstrated a distinct altered temporal response to IL-1β following suppression of MAP3K8. However, putative MAP3K8 inhibitors including Tpl2-1, Tpl2-2 and GSK2222867A only showed inhibition of IL-6 and IL-8 production at a high dose.

CONCLUSIONS: These results confirm that MAP3K8 is a key mediator of the early inflammatory response and that it is a potential target in inflammatory diseases. However, current tool compounds do not effectively inhibit its effects.

Original languageEnglish
Article number27
Pages (from-to)27
JournalJournal of Inflammation (United Kingdom)
Volume21
Issue number1
DOIs
StatePublished - 19 07 2024

Bibliographical note

© 2024. Crown.

Keywords

  • Epithelial cells
  • Inflammation
  • MAP3K8
  • Pathways

Fingerprint

Dive into the research topics of 'MAP3K8 is a potential therapeutic target in airway epithelial inflammation'. Together they form a unique fingerprint.

Cite this