Abstract
Conventionally, the camera localization for augmented reality (AR) relies on detecting a known pattern within the captured images. In this study, a markerless AR scheme has been designed based on a Stereo Video See-Through Head-Mounted Display (HMD) device. The proposed markerless AR scheme can be utilized for medical applications such as training, telementoring, or preoperative explanation. Firstly, a virtual model for AR visualization is aligned to the target in physical space by an improved Iterative Closest Point (ICP) based surface registration algorithm, with the target surface structure reconstructed by a stereo camera pair; then, a markerless AR camera localization method is designed based on the Kanade-Lucas-Tomasi (KLT) feature tracking algorithm and the Random Sample Consensus (RANSAC) correction algorithm. Our AR camera localization method is shown to be better than the traditional marker-based and sensor-based AR environment. The demonstration system was evaluated with a plastic dummy head and the display result is satisfactory for a multiple-view observation.
Original language | English |
---|---|
Article number | 329415 |
Journal | Mathematical Problems in Engineering |
Volume | 2015 |
DOIs | |
State | Published - 2015 |
Bibliographical note
Publisher Copyright:© 2015 Chung-Hung Hsieh and Jiann-Der Lee.