Metabolomics profiling reveals novel markers for leukocyte telomere length

Jonas Zierer, Gabi Kastenmüller, Karsten Suhre, Christian Gieger, Veryan Codd, Pei Chien Tsai, Jordana Bell, Annette Peters, Konstantin Strauch, Holger Schulz, Stephan Weidinger, Robert P. Mohney, Nilesh J. Samani, Tim Spector, Massimo Mangino, Cristina Menni*

*Corresponding author for this work

Research output: Contribution to journalJournal Article peer-review

32 Scopus citations


Leukocyte telomere length (LTL) is considered one of the most predictive markers of biological aging. The aim of this study was to identify novel pathways regulating LTL using a metabolomics approach. To this end, we tested associations between 280 blood metabolites and LTL in 3511 females from TwinsUK and replicated our results in the KORA cohort. We furthermore tested significant metabolites for associations with several aging-related phenotypes, gene expression markers and epigenetic markers to investigate potential underlying pathways. Five metabolites were associated with LTL: Two lysolipids, 1-stearoylglycerophosphoinositol (P=1.6×10-5) and 1-palmitoylglycerophosphoinositol (P=1.6×10-5), were found to be negatively associated with LTL and positively associated with phospholipase A2 expression levels suggesting an involvement of fatty acid metabolism and particularly membrane composition in biological aging. Moreover, two gammaglutamyl amino acids, gamma-glutamyltyrosine (P=2.5×10-6) and gamma-glutamylphenylalanine (P=1.7×10-5), were negatively correlated with LTL. Both are products of the glutathione cycle and markers for increased oxidative stress. Metabolites were also correlated with functional measures of aging, i.e. higher blood pressure and HDL cholesterol levels and poorer lung, liver and kidney function. Our results suggest an involvement of altered fatty acid metabolism and increased oxidative stress in human biological aging, reflected by LTL and age-related phenotypes of vital organ systems.

Original languageEnglish
Pages (from-to)77-94
Number of pages18
Issue number1
StatePublished - 2016
Externally publishedYes


  • Biological aging
  • Glutathione
  • Metabolomics
  • Oxidative stress
  • Telomere length


Dive into the research topics of 'Metabolomics profiling reveals novel markers for leukocyte telomere length'. Together they form a unique fingerprint.

Cite this