Abstract
Objective To establish the composition of bacteria in mice following cecum ligation and puncture (CLP) through metagenomic analysis and investigate the role of TLRs on the composition of bacteria. Methods Total DNA extraction was done from the ascites, blood, and fecal samples from C57BL/6 mice sacrificed at 0, 4, 8, and 16 h, as well as from Tlr2-/-, Tlr4-/-, Tlr5-/-, and NF-κB-/-mice sacrificed at 16 h following CLP. Amplification of the V3-V4 regions of the bacterial 16S rRNA genes by PCR and the Illumina MiSeq sequencer was used for deep sequencing. Hierarchical clustering of the isolates was performed with Ward's method using Euclidean distances. The relative abundance according to operational taxonomic unit (OTU) number or taxa was used to compare the richness among subgroups in the experiments. Results There were 18 taxa that had significantly different abundances among the different samples of the C57BL/6 mice at 16 h following CLP. Various dynamic changes in the infectious bacteria inside the peritoneal cavity after CLP were found. While knockout of Tlr5 and NF-κB impaired the ability of bacterial clearance inside the peritoneal cavity for some kinds of bacteria found in the C57BL/6 mice, the knockout of Tlr4 enhanced clearance for other kinds of bacteria, and they presented excessive abundance in the peritoneal cavity despite their scarce abundance in the stool. Conclusion NF-κB and TLRs are involved in bacterial clearance and in the expression pattern of the bacterial abundance inside the peritoneal cavity during polymicrobial infection.
Original language | English |
---|---|
Article number | e0220398 |
Journal | PLoS ONE |
Volume | 14 |
Issue number | 7 |
DOIs | |
State | Published - 01 07 2019 |
Bibliographical note
Publisher Copyright:Copyright: © 2019 Kuo et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.