Abstract
Osteogenesis imperfecta (OI) is not curative nowadays. This study tried to unriddle the therapeutic potential of micro ribonucleic acid-29a (miR-29a) antagonist in treating OI in a mouse animal model (B6C3Fe a/a-Col1a2oim/J). We showed that the expression levels of miR-29a were higher in bone tissues obtained from the OI mice than from wild-type mice demonstrated by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and in situ hybridization assay. We established lentivirus-shuttled vector expressing miR-29a antisense oligonucleotide (miR-29a-AS) and miR-29a precursors (pre-miR-29a), showing that the inferior bony architecture in micro-computed tomography and pertinent morphometric parameters could be rescued by miR-29a-AS and deteriorated by pre-miR-29a. The decreased proliferating cell nuclear antigen (PCNA), increased Dickkopf-1 (DKK1), and decreased β-catenin expression in OI mice could be accentuated by pre-miR-29a and normalized by miR-29a-AS. The decreased osteogenesis and increased osteoclastogenesis in OI mice could also be accentuated by pre-miR-29a and normalized by miR-29a-AS. miR-29a-AS did not seem to possess severe hepatic or renal toxicities.
Original language | English |
---|---|
Article number | 465 |
Journal | Biomedicines |
Volume | 11 |
Issue number | 2 |
DOIs | |
State | Published - 05 02 2023 |
Bibliographical note
Publisher Copyright:© 2023 by the authors.
Keywords
- dickkopf-1 (DKK1)
- microRNA-29a (miR-29a)
- osteogenesis imperfecta
- proliferating cell nuclear antigen (PCNA)
- β-catenin