Abstract
OBJECTIVE - Disturbances in podocytes are typically associated with marked proteinuria, a hallmark of diabetic nephropathy. This study was conducted to investigate modulation of Notch-1 signaling in high glucose (HG)-stressed human podocytes and in a diabetic animal model. RESEARCH DESIGN AND METHODS - Expression of the Notch signaling components was examined in HG-treated podocytes, human embryonic kidney cells (HEK293), and kidneys from diabetic animals by RT-qPCR, Western blot analysis, and immunohistochemical staining. The association between the Notch signaling, VEGF expression, and podocyte integrity was evaluated. RESULTS - Notch-1 signaling was significantly activated in HG-cultured human podocytes and HEK293 cells and kidneys from diabetic animals. HG also augmented VEGF expression, decreasing nephrin expression and podocyte number - a critical event for the development of proteinuria in diabetic nephropathy. After use of pharmacological modulators or specific shRNA knockdown strategies, inhibition of Notch-1 signaling significantly abrogated VEGF activation and nephrin repression in HG-stressed cells and ameliorated proteinuria in the diabetic kidney. CONCLUSIONS - Our findings suggest that upregulation of Notch-1 signaling in HG-treated renal podocytes induces VEGF expression and subsequent nephrin repression and apoptosis. Modulation of Notch-1 signaling may hold promise as a novel therapeutic strategy for the treatment of diabetic nephropathy.
Original language | English |
---|---|
Pages (from-to) | 1915-1925 |
Number of pages | 11 |
Journal | Diabetes |
Volume | 59 |
Issue number | 8 |
DOIs | |
State | Published - 08 2010 |