TY - JOUR
T1 - Monitoring microwave ablation using ultrasound homodyned K imaging based on the noise-assisted correlation algorithm
T2 - An ex vivo study
AU - Song, Shuang
AU - Tsui, Po Hsiang
AU - Wu, Weiwei
AU - Wu, Shuicai
AU - Zhou, Zhuhuang
N1 - Publisher Copyright:
© 2020 Elsevier B.V.
PY - 2021/2
Y1 - 2021/2
N2 - In this paper, we proposed ultrasound homodyned K (HK) imaging based on the noise-assisted correlation algorithm (NCA) for monitoring microwave ablation of porcine liver ex vivo. The NCA-based HK (αNCA and kNCA) imaging was compared with NCA-based Nakagami (mNCA) imaging and NCA-based cumulative echo decorrelation (CEDNCA) imaging. Backscattered ultrasound radiofrequency signals of porcine liver ex vivo during and after the heating of microwave ablation were collected (n = 15), which were processed for constructing B-mode imaging, NCA-based HK imaging, NCA-based Nakagami imaging, and NCA-based CED imaging. To quantitatively evaluate the final coagulation zone, the polynomial approximation (PAX) technique was applied. The accuracy of detecting coagulation area with αNCA, kNCA, mNCA, and CEDNCA parametric imaging was evaluated by comparing the PAX imaging with the gross pathology. The receiver operating characteristic (ROC) curve was used to further evaluate the performance of the three quantitative ultrasound imaging methods for detecting the coagulation zone. Experimental results showed that the average accuracies of αNCA, kNCA, mNCA, and CEDNCA parametric imaging combined with PAX imaging were 89.6%, 83.25%, 89.23%, and 91.6%, respectively. The average areas under the ROC curve (AUROCs) of αNCA, kNCA, mNCA, and CEDNCA parametric imaging were 0.83, 0.77, 0.83, and 0.86, respectively. The proposed NCA-based HK imaging may be used as a new method for monitoring microwave ablation.
AB - In this paper, we proposed ultrasound homodyned K (HK) imaging based on the noise-assisted correlation algorithm (NCA) for monitoring microwave ablation of porcine liver ex vivo. The NCA-based HK (αNCA and kNCA) imaging was compared with NCA-based Nakagami (mNCA) imaging and NCA-based cumulative echo decorrelation (CEDNCA) imaging. Backscattered ultrasound radiofrequency signals of porcine liver ex vivo during and after the heating of microwave ablation were collected (n = 15), which were processed for constructing B-mode imaging, NCA-based HK imaging, NCA-based Nakagami imaging, and NCA-based CED imaging. To quantitatively evaluate the final coagulation zone, the polynomial approximation (PAX) technique was applied. The accuracy of detecting coagulation area with αNCA, kNCA, mNCA, and CEDNCA parametric imaging was evaluated by comparing the PAX imaging with the gross pathology. The receiver operating characteristic (ROC) curve was used to further evaluate the performance of the three quantitative ultrasound imaging methods for detecting the coagulation zone. Experimental results showed that the average accuracies of αNCA, kNCA, mNCA, and CEDNCA parametric imaging combined with PAX imaging were 89.6%, 83.25%, 89.23%, and 91.6%, respectively. The average areas under the ROC curve (AUROCs) of αNCA, kNCA, mNCA, and CEDNCA parametric imaging were 0.83, 0.77, 0.83, and 0.86, respectively. The proposed NCA-based HK imaging may be used as a new method for monitoring microwave ablation.
KW - Echo decorrelation imaging
KW - Microwave ablation
KW - Nakagami imaging
KW - Noise-assisted correlation algorithm (NCA)
KW - homodyned K imaging
UR - http://www.scopus.com/inward/record.url?scp=85092939620&partnerID=8YFLogxK
U2 - 10.1016/j.ultras.2020.106287
DO - 10.1016/j.ultras.2020.106287
M3 - 文章
C2 - 33091652
AN - SCOPUS:85092939620
SN - 0041-624X
VL - 110
JO - Ultrasonics
JF - Ultrasonics
M1 - 106287
ER -