Multifunctional carbonized nanogels to treat lethal acute hepatopancreatic necrosis disease

Shao Chieh Yen, Ju Yi Mao, Hung Yun Lin, Huai Ting Huang, Scott G. Harroun, Amit Nain, Huan Tsung Chang, Han You Lin, Li Li Chen, Chih Ching Huang*, Han Jia Lin*

*Corresponding author for this work

Research output: Contribution to journalJournal Article peer-review

5 Scopus citations

Abstract

Background: Shrimp aquaculture has suffered huge economic losses over the past decade due to the outbreak of acute hepatopancreatic necrosis disease (AHPND), which is mainly caused by the bacteria Vibrio parahaemolyticus (V. parahaemolyticus) with the virulence pVA1 plasmid, which encodes a secretory photorhabdus insect-related (Pir) toxin composed of PirA and PirB proteins. The Pir toxin mainly attacks the hepatopancreas, a major metabolic organ in shrimp, thereby causing necrosis and loss of function. The pandemic of antibiotic-resistant strains makes the impact worse. Methods: Mild pyrolysis of a mixture of polysaccharide dextran 70 and the crosslinker 1,8-diaminooctane at 180 ℃ for 3 h to form carbonized nanogels (DAO/DEX-CNGs) through controlled cross-linking and carbonization. The multifunctional therapeutic CNGs inherit nanogel-like structures and functional groups from their precursor molecules. Results: DAO/DEX-CNGs manifest broad-spectrum antibacterial activity against Vibrio parahaemolyticus responsible for AHPND and even multiple drug-resistant strains. The polymer-like structures and functional groups on graphitic-carbon within the CNGs exhibit multiple treatment effects, including disruption of bacterial membranes, elevating bacterial oxidative stress, and neutralization of PirAB toxins. The inhibition of Vibrio in the midgut of infected shrimp, protection of hepatopancreas tissue from Pir toxin, and suppressing overstimulation of the immune system in severe V. parahaemolyticus infection, revealing that CNGs can effectively guard shrimp from Vibrio invasion. Moreover, shrimps fed with DAO/DEX-CNGs were carefully examined, such as the expression of the immune-related genes, hepatopancreas biopsy, and intestinal microbiota. Few adverse effects on shrimps were observed. Conclusion: Our work proposes brand-new applications of multifunctional carbon-based nanomaterials as efficient anti-Vibrio agents in the aquatic industry that hold great potential as feed additives to reduce antibiotic overuse in aquaculture. Graphical Abstract: [Figure not available: see fulltext.]

Original languageEnglish
Article number448
JournalJournal of Nanobiotechnology
Volume19
Issue number1
DOIs
StatePublished - 12 2021
Externally publishedYes

Bibliographical note

Publisher Copyright:
© 2021, The Author(s).

Keywords

  • Antibiotic overuse
  • Antimicrobial agents
  • Carbon nanogels
  • Toxin neutralization
  • Vibrio

Fingerprint

Dive into the research topics of 'Multifunctional carbonized nanogels to treat lethal acute hepatopancreatic necrosis disease'. Together they form a unique fingerprint.

Cite this