Multiple positive solutions for a quasilinear elliptic problem involving critical SobolevHardy exponents and concaveconvex nonlinearities

Tsing San Hsu*

*Corresponding author for this work

Research output: Contribution to journalJournal Article peer-review

17 Scopus citations

Abstract

Let Ω⊂RN (N<3) be a bounded smooth domain containing the origin. In this paper, by using variational methods, the multiplicity of positive solutions is obtained for a quasilinear elliptic problem -Δpu-μ|u|p-2u|x|p=|u| p*(t)-2|x|tu+λ| u|q-2|x|su,u∈W01.p(Ω), with Dirichlet boundary condition, where Δpu=div(|∇u|p-2∇u), 1<p<N, 0≤μ<μ=(N-pp)p, λ>0, 0≤s,t<p, 1≤q<p and p*(t)=p(N-t)N-p is the critical SobolevHardy exponent.

Original languageEnglish
Pages (from-to)3934-3944
Number of pages11
JournalNonlinear Analysis, Theory, Methods and Applications
Volume74
Issue number12
DOIs
StatePublished - 08 2011

Keywords

  • Concaveconvex nonlinearities
  • Critical SobolevHardy exponent
  • Multiple positive solutions
  • Variational methods

Fingerprint

Dive into the research topics of 'Multiple positive solutions for a quasilinear elliptic problem involving critical SobolevHardy exponents and concaveconvex nonlinearities'. Together they form a unique fingerprint.

Cite this