Abstract
Let Ω⊂RN (N<3) be a bounded smooth domain containing the origin. In this paper, by using variational methods, the multiplicity of positive solutions is obtained for a quasilinear elliptic problem -Δpu-μ|u|p-2u|x|p=|u| p*(t)-2|x|tu+λ| u|q-2|x|su,u∈W01.p(Ω), with Dirichlet boundary condition, where Δpu=div(|∇u|p-2∇u), 1<p<N, 0≤μ<μ=(N-pp)p, λ>0, 0≤s,t<p, 1≤q<p and p*(t)=p(N-t)N-p is the critical SobolevHardy exponent.
Original language | English |
---|---|
Pages (from-to) | 3934-3944 |
Number of pages | 11 |
Journal | Nonlinear Analysis, Theory, Methods and Applications |
Volume | 74 |
Issue number | 12 |
DOIs | |
State | Published - 08 2011 |
Keywords
- Concaveconvex nonlinearities
- Critical SobolevHardy exponent
- Multiple positive solutions
- Variational methods