TY - JOUR
T1 - Multiple positive solutions for semilinear elliptic equations involving multi-singular inverse square potentials and concaveconvex nonlinearities
AU - Hsu, Tsing San
PY - 2011/7
Y1 - 2011/7
N2 - In this paper, we deal with the existence and multiplicity of positive solutions for the multi-singular semilinear elliptic equations -Δu-∑i=1k μi/|x-ai| 2u=|u|2* -2u+λ| u|q-2u, x∈Ω, where Ω⊂ℝN(N≥3) is a smooth bounded domain such that the points ai∈Ω, i=1,2,⋯,k, k≥2, are different, 0≤ μi <μ̄=(N-2/2)2, λ>0, 1≤q<2, and 2* =2N/N-2. The results depend crucially on the parameters λ, q and μi for i=1,2,⋯,k.
AB - In this paper, we deal with the existence and multiplicity of positive solutions for the multi-singular semilinear elliptic equations -Δu-∑i=1k μi/|x-ai| 2u=|u|2* -2u+λ| u|q-2u, x∈Ω, where Ω⊂ℝN(N≥3) is a smooth bounded domain such that the points ai∈Ω, i=1,2,⋯,k, k≥2, are different, 0≤ μi <μ̄=(N-2/2)2, λ>0, 1≤q<2, and 2* =2N/N-2. The results depend crucially on the parameters λ, q and μi for i=1,2,⋯,k.
KW - Concaveconvex nonlinearities
KW - Multi-singular
KW - Multiple positive solutions
UR - http://www.scopus.com/inward/record.url?scp=79955550611&partnerID=8YFLogxK
U2 - 10.1016/j.na.2011.03.016
DO - 10.1016/j.na.2011.03.016
M3 - 文章
AN - SCOPUS:79955550611
SN - 0362-546X
VL - 74
SP - 3703
EP - 3715
JO - Nonlinear Analysis, Theory, Methods and Applications
JF - Nonlinear Analysis, Theory, Methods and Applications
IS - 11
ER -