Abstract
Photodynamic therapy (PDT) dosimetry is complex as many factors are involved and varied interdependently. Monitoring the biological consequence of PDT such as cell death is the most direct approach to assess treatment efficacy. In this study, we performed 5-aminolevlinic acid (ALA)-PDT in vitro to induce different cell death modes (i.e., slight cell cytotoxicity, apoptosis, and necrosis) by a fixed fluence rate of 10 mW/cm2 and varied fluences (1, 2, and 6 J/cm2). Time course measurements of cell viability, caspase-3 activity, and DNA fragmentation were conducted to determine the mode of cell death. We demonstrated that NADH fluorescence lifetime together with NADH fluorescence intensity permit us to detect apoptosis and differentiate it from necrosis. This feature will be unique in the use of optimizing apoptosis-favored treatments such as metronomic PDT.
Original language | English |
---|---|
Pages (from-to) | 21145-21154 |
Number of pages | 10 |
Journal | Optics Express |
Volume | 19 |
Issue number | 22 |
DOIs | |
State | Published - 24 10 2011 |
Externally published | Yes |