Near-Infrared Imaging of Colonic Adenomas In Vivo Using Orthotopic Human Organoids for Early Cancer Detection

Xiaoli Wu, Chun Wei Chen, Sangeeta Jaiswal, Tse Shao Chang, Ruoliu Zhang, Michael K. Dame, Yuting Duan, Hui Jiang, Jason R. Spence, Sen Yung Hsieh*, Thomas D. Wang*

*Corresponding author for this work

Research output: Contribution to journalJournal Article peer-review

2 Scopus citations

Abstract

Colorectal cancer is a leading cause of cancer-related morbidity and mortality worldwide. Premalignant lesions that are flat and subtle in morphology are often missed in conventional colonoscopies. Patient-derived adenoma colonoids with high and low cMet expression and normal colonoids were implanted orthotopically in the colon of immunocompromised mice to serve as a preclinical model system. A peptide specific for cMet was labeled with IRDye800, a near-infrared (NIR) fluorophore. This peptide was administered intravenously, and in vivo imaging was performed using a small animal fluorescence endoscope. Quantified intensities showed a peak target-to-background ratio at ~1 h after intravenous peptide injection, and the signal cleared by ~24 h. The peptide was stable in serum with a half-life of 3.6 h. Co-staining of adenoma and normal colonoids showed a high correlation between peptide and anti-cMet antibody. A human-specific cytokeratin stain verified the presence of human tissues implanted among surrounding normal mouse colonic mucosa. Peptide biodistribution was consistent with rapid renal clearance. No signs of acute toxicity were found on either animal necropsy or serum hematology and chemistries. Human colonoids provide a clinically relevant preclinical model to evaluate the specific uptake of a NIR peptide to detect premalignant colonic lesions in vivo.

Original languageEnglish
Article number4795
JournalCancers
Volume15
Issue number19
DOIs
StatePublished - 29 09 2023
Externally publishedYes

Bibliographical note

Publisher Copyright:
© 2023 by the authors.

Keywords

  • cMet
  • cancer
  • colonoid
  • early detection
  • fluorescence
  • imaging
  • peptide

Fingerprint

Dive into the research topics of 'Near-Infrared Imaging of Colonic Adenomas In Vivo Using Orthotopic Human Organoids for Early Cancer Detection'. Together they form a unique fingerprint.

Cite this