Neutralization of interleukin (IL)-10 released by monocytes/macrophages enhances the up-regulatory effect of monocyte/macrophage-derived IL-6 on expressions of IL-6 and MUC1, and migration in HT-29 colon cancer cells

Ying Ying Li, John W.C. Chang, Ling Ling Hsieh, Kun Yun Yeh*

*Corresponding author for this work

Research output: Contribution to journalJournal Article peer-review

13 Scopus citations

Abstract

The interactions between monocyte-derived IL-6 and IL-10 in colon cancer are unknown. We continued previous work that showed monocyte/macrophage-derived IL-6 induces IL-6 and MUC1 expression in HT-29 cancer cells, and evaluated if IL-10 present in monocyte/macrophage is involved in this IL-6-mediated effect. We treated HT-29 cells with monocyte/macrophage supernatant following neutralization of monocyte/macrophage-released IL-10. Neutralization markedly enhanced monocyte/macrophage-derived IL-6 effects on HT-29 cells including IL-6 and MUC1 production and cell migration. Double blocking of IL-6 and IL-10 in monocyte/macrophage supernatants abolished this enhancement. Western blot analysis of STAT3 phosphorylation showed that this augmented response in HT-29 cells following IL-10 neutralization is probably mediated through enhanced IL-6-induced phosphorylation (Tyr705) of STAT3 proteins. Therefore, monocytes/macrophages have the capacity to release the functionally associated cytokines IL-6 and IL-10 whose interactions can account for the pathogenesis and progression of colon cancer.

Original languageEnglish
Pages (from-to)164-171
Number of pages8
JournalCellular Immunology
Volume265
Issue number2
DOIs
StatePublished - 2010

Keywords

  • Colon cancer
  • IL-10
  • IL-6
  • MUC1
  • Macrophage
  • Migration

Fingerprint

Dive into the research topics of 'Neutralization of interleukin (IL)-10 released by monocytes/macrophages enhances the up-regulatory effect of monocyte/macrophage-derived IL-6 on expressions of IL-6 and MUC1, and migration in HT-29 colon cancer cells'. Together they form a unique fingerprint.

Cite this