Abstract
We report the synthesis of N-doped TiO2 nanofibers and high photocatalytic efficiency in generating hydrogen from ethanol-water mixtures under UV-A and UV-B irradiation. Titanate nanofibers synthesized by hydrothermal method are annealed in air and/or ammonia to achieve N-doped anatase fibers. Depending on the synthesis route, either interstitial N atoms or new N-Ti bonds appear in the lattice, resulting in slight lattice expansion as shown by XPS and HR-TEM analysis, respectively. These nanofibers were then used as support for Pd and Pt nanoparticles deposited with wet impregnation followed by calcination and reduction. In the hydrogen generation tests, the N-doped samples were clearly outperforming their undoped counterparts, showing remarkable efficiency not only under UV-B but also with UV-A illumination. When 100 mg of catalyst (N-doped TiO2 nanofiber decorated with Pt nanoparticles) was applied to 1 L of water-ethanol mixture, the H2 evolution rates were as high as 700 μmol/h (UV-A) and 2250 μmol/h (UV-B) corresponding to photo energy conversion percentages of ∼3.6 and ∼12.3%, respectively.
Original language | English |
---|---|
Pages (from-to) | 5025-5030 |
Number of pages | 6 |
Journal | ACS Nano |
Volume | 5 |
Issue number | 6 |
DOIs | |
State | Published - 28 06 2011 |
Externally published | Yes |
Keywords
- hydrogen production
- nanowire
- nitrogen-doped anatase
- photocatalysis