Abstract
Oral squamous cell carcinoma (OSCC) is the most common malignancy of the oral cavity with poor prognosis. The dysregulation of Notch signaling pathway has been implicated in the OSCC tumorigenesis. However, the clinical implication of NOTCH1 mutation status in OSCC remains unelucidated. We extracted the NOTCH1 gene mutations from a whole exome sequencing dataset of 168 frozen OSCC tumor specimens and validated these NOTCH1 gene mutations by Sanger sequencing. We also assessed these NOTCH1 gene mutations and its pathological significance in our OSCC tumor tissues using immunohistochemistry. Univariate and multivariate analyses were also used to determine whether the association between NOTCH1 mutation status and prognostic factors was independent of other parameters. In this study, we have identified 44 (26.19 %) NOTCH1 gene mutations from a whole-exome sequencing of 168 OSCC formalin-fixed, paraffin-embedded (FFPE) tissue specimen. These mutations distributed in different NOTCH1 function domains, including the EGF-like repeats region, negative regulatory region, and Ankyrin repeats region. The immunohistochemical staining analysis revealed that NOTCH1 expression was increased in oral cancer tissues. In addition, of the 43 OSCC tumors with NOTCH1 mutations, we observed that the majority were negative for NOTCH1 intracellular domain 1 (NICD1) staining (76.74 %), and 10 tumors were positive for NICD1 staining (23.26 %). In conclusion, our study suggested that NOTCH1 expression is associated with the progression of OSCC. We also demonstrated that presence of a mutated NOTCH1 gene will help prognostic stratification in OSCC when combined with other clinicopathologic parameters.
Original language | English |
---|---|
Article number | 153474 |
Journal | Pathology Research and Practice |
Volume | 223 |
DOIs | |
State | Published - 07 2021 |
Externally published | Yes |
Bibliographical note
Publisher Copyright:© 2021 Elsevier GmbH
Keywords
- Cancer driver genes
- NOTCH1 mutation and expression
- OSCC
- Tumor heterogeneity