Novel Biodegradable 3D-Printed Analgesics-Eluting-Nanofibers Incorporated Nuss Bars for Therapy of Pectus Excavatum

Kuo Sheng Liu, Wei Hsun Chen, Chen Hung Lee, Yong Fong Su, Yen Wei Liu, Shih Jung Liu*

*Corresponding author for this work

Research output: Contribution to journalJournal Article peer-review

3 Scopus citations

Abstract

A novel hybrid biodegradable Nuss bar model was developed to surgically correct the pectus excavatum and reduce the associated pain during treatment. The scheme consisted of a three-dimensional (3D) printed biodegradable polylactide (PLA) Nuss bar as the surgical implant and electrospun polylactide–polyglycolide (PLGA) nanofibers loaded with lidocaine and ketorolac as the analgesic agents. The degradation rate and mechanical properties of the PLA Nuss bars were characterized after submersion in a buffered mixture for different time periods. In addition, the in vivo biocompatibility of the integrated PLA Nuss bars/analgesic-loaded PLGA nanofibers was assessed using a rabbit chest wall model. The outcomes of this work suggest that integration of PLA Nuss bar and PLGA/analgesic nanofibers could successfully enhance the results of pectus excavatum treatment in the animal model. The histological analysis also demonstrated good biocompatibility of the PLA Nuss bars with animal tissues. Eventually, the 3D printed biodegradable Nuss bars may have a potential role in pectus excavatum treatment in humans.

Original languageEnglish
Article number2265
JournalInternational Journal of Molecular Sciences
Volume23
Issue number4
DOIs
StatePublished - 01 02 2022

Bibliographical note

Publisher Copyright:
© 2022 by the authors. Licensee MDPI, Basel, Switzerland.

Keywords

  • 3D printing
  • Analgesics
  • Biodegradable Nuss bar
  • Pectus excavatum
  • Polylactide

Fingerprint

Dive into the research topics of 'Novel Biodegradable 3D-Printed Analgesics-Eluting-Nanofibers Incorporated Nuss Bars for Therapy of Pectus Excavatum'. Together they form a unique fingerprint.

Cite this