Abstract
Protein kinase FA (an activating factor of ATP·Mg-dependent protein phosphatase) has been characterized to exist in two forms in the purified brain myelin. One form of kinase FA is spontaneously active and trypsin-labile, whereas the other form of kinase FA is inactive and trypsin-resistant, suggesting a different membrane topography with active FA exposed on the outer face of the myelin membrane and inactivu FQ buried within the myelin membrane. When myelin was solubilized in 1% Triton X-100, all kinase FA became active and trypsin-labile. Phospholipid reconstitution studies further indicated that when kinase FA was reconstituted in acidic phospholipids, such as phosphatidylinositol and phosphatidylserine, the enzyme activity was inhibited in a dose-dependent manner, suggesting that kinase FA interacts with acidic phospholipids which inhibit its activity. Furthermore, when myelin was incubated with exogenous phospholipase C, the inactive/trypsin-resistant FA could be converted to the active/trypsin-labile FA in a time- and dose-dependent manner. Taken together, it is concluded that membrane phospholipids play an important role in modulating the activity of kinase FA in the brain myelin. It is suggested that phospholipase C may mediate the activation-sequestration of inactive/trypsin-resistant kinase FA in the brain myelin through the phospholipase C-katalyzed degradation of acidic membrane phospholipids. The activation-sequestration of protein Kinase FA may represent one mode of control modulating the activity of kinase FA in the central nervous system myelin.
Original language | English |
---|---|
Pages (from-to) | 75-82 |
Number of pages | 8 |
Journal | Journal of Protein Chemistry |
Volume | 9 |
Issue number | 1 |
DOIs | |
State | Published - 02 1990 |
Keywords
- Protein kinase
- brain myelin membranes
- phospholipids
- protein phosphatase