Abstract
The opening of an electrical band gap in graphene is crucial for its application for logic circuits. Recent studies have shown that an energy gap in Bernal-stacked bilayer graphene can be generated by applying an electric displacement field. Molecular doping has also been proposed to open the electrical gap of bilayer graphene by breaking either in-plane symmetry or inversion symmetry; however, no direct observation of an electrical gap has been reported. Here we discover that the organic molecule triazine is able to form a uniform thin coating on the top surface of a bilayer graphene, which efficiently blocks the accessible doping sites and prevents ambient p-doping on the top layer. The charge distribution asymmetry between the top and bottom layers can then be enhanced simply by increasing the p-doping from oxygen/moisture to the bottom layer. The on/off current ratio for a bottom-gated bilayer transistor operated in ambient condition is improved by at least 1 order of magnitude. The estimated electrical band gap is up to ∼111 meV at room temperature. The observed electrical band gap dependence on the hole-carrier density increase agrees well with the recent density-functional theory calculations. This research provides a simple method to obtain a graphene bilayer transistor with a moderate on/off current ratio, which can be stably operated in air without the need to use an additional top gate.
Original language | English |
---|---|
Pages (from-to) | 7517-7524 |
Number of pages | 8 |
Journal | ACS Nano |
Volume | 5 |
Issue number | 9 |
DOIs | |
State | Published - 27 09 2011 |
Externally published | Yes |
Keywords
- Raman spectroscopy
- band gap opening
- bilayer grapheme
- doping
- on/off current ratio
- transistor
- triazine