Abstract
This study explores the design of a reactive distillation system and that of a heterogeneous azeotropic system by incorporating dividing-wall column (DWC). The first system involves the esterification of mixed acid (acetic acid and propionic acid) with methanol. Simulation studies are carried out for conventional reactive distillation sequence as well as for reactive dividing-wall distillation system. Both systems are optimized by an iterative optimization procedure. Optimal design results show that the reactive dividing-wall system saves steam consumption by 45.2% and reduces total annual costs (TAC) by 34.5%. The second case investigated is a heterogeneous azeotropic distillation system involving dehydration of crude isopropyl alcohol with cyclohexane as entrainer. Two optimal separation systems are generated, including one with a single-dividing wall column and one with a double-dividing wall column. In comparison with an energy-efficient azeotropic distillation sequence containing two stripping columns by Chang et al. (2012) [1], simulation results show that the former two systems can cut steam usage further by 6.0%. The two systems save about 5.4-6.1% in terms of TAC. DWCs prove to be superior to the convention distillation systems with respect to both cost and energy efficiency.
Original language | English |
---|---|
Pages (from-to) | e108-e124 |
Journal | Chemical Engineering and Processing: Process Intensification |
Volume | 85 |
DOIs | |
State | Published - 01 11 2014 |
Externally published | Yes |
Bibliographical note
Publisher Copyright:© 2014 Elsevier B.V.
Keywords
- Dividing-wall column
- Heterogeneous azeotropic distillation
- Optimal design
- Reactive distillation