Overexpression of ABCB1 and ABCG2 contributes to reduced efficacy of the PI3K/mTOR inhibitor samotolisib (LY3023414) in cancer cell lines

Chung Pu Wu*, Cheng Yu Hung, Sabrina Lusvarghi, Yang Hui Huang, Pin Jung Tseng, Tai Ho Hung, Jau Song Yu, Suresh V. Ambudkar

*Corresponding author for this work

Research output: Contribution to journalJournal Article peer-review

21 Scopus citations

Abstract

LY3023414 (samotolisib) is a promising new dual inhibitor of phosphoinositide 3-kinase (PI3K) and mammalian target of rapamycin (mTOR). Currently, multiple clinical trials are underway to evaluate the efficacy of LY3023414 in patients with various types of cancer. However, the potential mechanisms underlying acquired resistance to LY3023414 in human cancer cells still remain elusive. In this study, we investigated whether the overexpression of ATP-binding cassette (ABC) drug transporters such as ABCB1 and ABCG2, one of the most common mechanisms for developing multidrug resistance, may potentially reduce the efficacy of LY3023414 in human cancer cells. We demonstrated that the intracellular accumulation of LY3023414 in cancer cells was significantly reduced by the drug efflux function of ABCB1 and ABCG2. Consequently, the cytotoxicity and efficacy of LY3023414 for inhibiting the activation of the PI3K pathway and induction of G0/G1 cell-cycle arrest were substantially reduced in cancer cells overexpressing ABCB1 or ABCG2, which could be restored using tariquidar or Ko143, respectively. Furthermore, stimulatory effect of LY3023414 on the ATPase activity of ABCB1 and ABCG2, as well as in silico molecular docking analysis of LY3023414 binding to the substrate-binding pockets of these transporters provided additional insight into the manner in which LY3023414 interacts with both transporters. In conclusion, we report that LY3023414 is a substrate for ABCB1 and ABCG2 transporters implicating their role in the development of resistance to LY3023414, which can have substantial clinical implications and should be further investigated.

Original languageEnglish
Article number114137
JournalBiochemical Pharmacology
Volume180
DOIs
StatePublished - 10 2020
Externally publishedYes

Bibliographical note

Publisher Copyright:
© 2020 Elsevier Inc.

Keywords

  • ABCB1
  • ABCG2
  • LY3023414
  • Multidrug resistance
  • PI3K/mTOR

Fingerprint

Dive into the research topics of 'Overexpression of ABCB1 and ABCG2 contributes to reduced efficacy of the PI3K/mTOR inhibitor samotolisib (LY3023414) in cancer cell lines'. Together they form a unique fingerprint.

Cite this