Abstract
In-accumulated Si(111)√3 × √3-Au surface represents a highly-ordered homogeneous Au/Si(111) reconstruction with a two-dimensional gas of In adatoms on it. Regularities of C60 migration on this surface have been elucidated through analysis of C60 island density as a function of growth temperature and deposition rate in the framework of the rate equation theory and simulation of C60 migration using density-functional-theory calculations. The critical cluster size has been found to be i = 1 for the whole temperature range studied, from 110 to 240 K, while activation energy for C60 diffusion varies from (99 ± 18) meV at 110 ÷ 140 K to (370 ± 24) meV at 160 ÷ 240 K. This finding has been accounted to the peculiarity of C60 migration in a labyrinth built of In adatoms on the Si(111)√3 × √3-Au surface, namely, at low temperatures C60 migration is confined within the labyrinth channels, while at high temperatures C60 molecules possess enough thermal energy to surmount the labyrinth walls.
Original language | English |
---|---|
Pages (from-to) | 44-50 |
Number of pages | 7 |
Journal | Surface Science |
Volume | 616 |
DOIs | |
State | Published - 10 2013 |
Externally published | Yes |
Keywords
- Atom-solid interactions
- First-principle calculations
- Fullerene
- Scanning tunneling microscopy
- Silicon
- Surface diffusion