Performance characterization of a novel compact dust collector with pleated filter cartridges

A. N. Huang, Wan-Yi Hsu, T. Fukasawa, T. Ishigami, K. Fukui*, Hsiu-Po Kuo*

*Corresponding author for this work

Research output: Contribution to journalJournal Article peer-review

4 Scopus citations

Abstract

A compact dust collector loaded with four pleated filter cartridges is numerically studied by Computational Fluid Dynamics (CFD). The performance of the dust collector is evaluated during filtration and during backwashing, and the predictions are compared with the experimental results. In the filtration operation, the upper right corner entry design effectively guides the airflow to the two sides of the four cartridges through the air opposite-side-wall impacting and rebounding. A relatively poor filtration is found at the right side of the left lower cartridge. The CFD predictions agree well with the experimental data in terms of showing better backwash cleaning performances of the lower cartridges and at the cartridge front positions. During the 50 ms pulse-jet backwashing, the difference between the maximum and minimum air mass flow rates through a total of 16 × 2 inject holes is less than 4.0%. The high pressure of 0.5 MPa draws the air flowing from the normal exit, which acts as the majority of the backwashing air (ca. 73.7%). The hydrostatic pressure acting on the four cartridges is greater than 1750 Pa in 80% of the pulse-jet cleaning time.

Original languageEnglish
Article number122468
JournalSeparation and Purification Technology
Volume305
DOIs
StatePublished - 15 01 2023

Bibliographical note

Publisher Copyright:
© 2022 Elsevier B.V.

Keywords

  • CFD
  • Dust collector
  • Pleated filter cartridge
  • Pulse-jet cleaning

Fingerprint

Dive into the research topics of 'Performance characterization of a novel compact dust collector with pleated filter cartridges'. Together they form a unique fingerprint.

Cite this