Abstract
Developing a personalized risk prediction model of death is fundamental for improving patient care and touches on the realm of personalized medicine. The increasing availability of genomic information and large-scale meta-analytic data sets for clinicians has motivated the extension of traditional survival prediction based on the Cox proportional hazards model. The aim of our paper is to develop a personalized risk prediction formula for death according to genetic factors and dynamic tumour progression status based on meta-analytic data. To this end, we extend the existing joint frailty-copula model to a model allowing for high-dimensional genetic factors. In addition, we propose a dynamic prediction formula to predict death given tumour progression events possibly occurring after treatment or surgery. For clinical use, we implement the computation software of the prediction formula in the joint.Cox R package. We also develop a tool to validate the performance of the prediction formula by assessing the prediction error. We illustrate the method with the meta-analysis of individual patient data on ovarian cancer patients.
Original language | English |
---|---|
Pages (from-to) | 2842-2858 |
Number of pages | 17 |
Journal | Statistical Methods in Medical Research |
Volume | 27 |
Issue number | 9 |
DOIs | |
State | Published - 01 09 2018 |
Externally published | Yes |
Bibliographical note
Publisher Copyright:© The Author(s) 2017.
Keywords
- Compound covariate
- copula
- dependent censoring
- risk prediction
- semi-competing risk
- surrogate endpoint