Polystyrene-Colonizing Bacteria are Enriched for Long-Chain Alkane Degradation Pathways

Shu Wei Hsueh, You-Hua Jian, Sebastian-Dudo Fugmann, Shu-Yuan Yang

Research output: Contribution to journalJournal Article peer-review


<div data-language="eng" data-ev-field="abstract">One of the most promising strategies for the management of plastic waste is microbial biodegradation, but efficient degraders for many types of plastics are still lacking, including for polystyrene (PS). Genomics has emerged as a powerful tool for mining environmental microbes that may have the ability to degrade different types of plastics. In this study, we use 16S sequencing to analyze the microbiomes for multiple PS samples collected from sites with different vegetation in Taiwan to reveal potential common properties between species that have exhibit growth advantages on PS surfaces. Phylum enrichment analysis identified Cyanobacteria and Deinococcus-Thermus as being the most over-represented groups on PS, and both phyla include species known to reside in extreme environments and could encode unique enzymes that grant them properties suitable for colonization on PS surfaces. Investigation of functional enrichment in PS-enriched species highlighted carbon metabolic pathways, especially those related to hydrocarbon degradation. This is corroborated by the finding that genes encoding long-chain alkane hydroxylases such as AlmA are more prevalent in the genomes of PS-associated bacteria. Our analyses illustrate how plastic in the environment support the colonization of different microbes compared to surrounding soil. In addition, our results point to the possibility that alkane hydroxylases could confer growth advantages of microbes on PS.<br/></div> &copy; 2023, The Authors. All rights reserved.
Original languageAmerican English
StatePublished - 2023


  • Bacteria
  • Biodegradable polymers
  • Elastomers
  • Encoding (symbols)
  • Paraffins
  • Plastics
  • Polystyrenes
  • Waste management
  • 16s sequencing
  • Alkane hydroxylase
  • Colonisation
  • Degradation pathways
  • Environmental microbes
  • Genomics
  • Growth advantages
  • Long chain alkane
  • Microbial biodegradation
  • Plastics waste


Dive into the research topics of 'Polystyrene-Colonizing Bacteria are Enriched for Long-Chain Alkane Degradation Pathways'. Together they form a unique fingerprint.

Cite this