Abstract
Urease was covalently immobilized onto porous chitosan beads via primary amine groups connected to the backbone via a six-carbon linear alkyl spacer. The optimum conditions for enzyme immobilization are activating the beads with 1%(w/w) glutaraldehyde, reacting the activated beads in pH 7 buffer with the enzyme, using an enzyme to bead weight ratio of 25, and without lyophilization. Chitosan-bound urease was found to fully retain its specific activity. Properties of the immobilized urease were characterized under batch and flow conditions. Increased optimum reaction temperature, enhanced thermal stability and storage stability, and excellent reusability were found after enzyme immobilization. Continuous hydrolysis of urea solution was studied in a column packed with the enzyme-containing beads for its possible application in regenerating dialysate solution during hemodialysis.
Original language | English |
---|---|
Pages (from-to) | 323-330 |
Number of pages | 8 |
Journal | Bioprocess Engineering |
Volume | 21 |
Issue number | 4 |
DOIs | |
State | Published - 1999 |