TY - JOUR
T1 - Rapid and label-free detection of the troponin in human serum by a TiN-based extended-gate field-effect transistor biosensor
AU - Pan, Tung Ming
AU - Wang, Chih Wei
AU - Weng, Wei Che
AU - Lai, Chih Chang
AU - Lu, Yu Ying
AU - Wang, Chao Yung
AU - Hsieh, I. Chang
AU - Wen, Ming Shien
N1 - Publisher Copyright:
© 2022 Elsevier B.V.
PY - 2022/4/1
Y1 - 2022/4/1
N2 - In this article, the TiN sensitive film as a sensing membrane was deposited onto n+-type Si substrate by a DC sputtering technique for extended-gate field-effect transistor (EGFET) pH sensors and detection of cardiac troponin-I (cTn-I) in the patient sera for the first time. The crystal structure, Raman spectrum, element profile, surface roughness, and surface morphology of the TiN sensitive film were characterized by X-ray diffraction, Raman spectroscopy, secondary ion mass spectroscopy, atomic force microscopy, and scanning electron microscopy, respectively. The sensing performance of the TiN sensitive film is correlated with its relative structural feature. A high sensitivity of 57.49 mV/pH, a small hysteresis voltage of ∼1 mV, and a low drift rate of 0.31 mV/h were obtained in the TiN sensitive film. In addition, the pH sensitivity of this TiN EGFET sensor was preserved approximately 57 mV/pH after operation time of 180 days. Subsequently, the cTn-I antibodies with carboxyl groups activated by 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC) along with N-hydroxysuccinimide (NHS) were immobilized on the TiN sensitive film functionalizing with 3-aminopropyl triethoxysilane (APTES). After obtaining the successful immobilization of cTn-I antibodies on the TiN EGFET biosensor, the cTn-I antigen specifically binds with its relative antibody. The cTn-I EGFET biosensor showed a high sensitivity of 21.88 mV/pCcTn-I in a wide dynamic range of 0.01–100 ng/mL. Furthermore, the concentrations of cTn-I in patient sera measured by our TiN EGFET biosensors are comparable to those determined by commercial enzyme-linked immuno-sorbent assay kits.
AB - In this article, the TiN sensitive film as a sensing membrane was deposited onto n+-type Si substrate by a DC sputtering technique for extended-gate field-effect transistor (EGFET) pH sensors and detection of cardiac troponin-I (cTn-I) in the patient sera for the first time. The crystal structure, Raman spectrum, element profile, surface roughness, and surface morphology of the TiN sensitive film were characterized by X-ray diffraction, Raman spectroscopy, secondary ion mass spectroscopy, atomic force microscopy, and scanning electron microscopy, respectively. The sensing performance of the TiN sensitive film is correlated with its relative structural feature. A high sensitivity of 57.49 mV/pH, a small hysteresis voltage of ∼1 mV, and a low drift rate of 0.31 mV/h were obtained in the TiN sensitive film. In addition, the pH sensitivity of this TiN EGFET sensor was preserved approximately 57 mV/pH after operation time of 180 days. Subsequently, the cTn-I antibodies with carboxyl groups activated by 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC) along with N-hydroxysuccinimide (NHS) were immobilized on the TiN sensitive film functionalizing with 3-aminopropyl triethoxysilane (APTES). After obtaining the successful immobilization of cTn-I antibodies on the TiN EGFET biosensor, the cTn-I antigen specifically binds with its relative antibody. The cTn-I EGFET biosensor showed a high sensitivity of 21.88 mV/pCcTn-I in a wide dynamic range of 0.01–100 ng/mL. Furthermore, the concentrations of cTn-I in patient sera measured by our TiN EGFET biosensors are comparable to those determined by commercial enzyme-linked immuno-sorbent assay kits.
KW - Acute myocardial infarction (AMI)
KW - Cardiac troponin-I (cTn-I)
KW - Extended-gate field-effect transistor (EGFET)
KW - TiN sensitive Film
UR - http://www.scopus.com/inward/record.url?scp=85122525190&partnerID=8YFLogxK
U2 - 10.1016/j.bios.2022.113977
DO - 10.1016/j.bios.2022.113977
M3 - 文章
C2 - 35026544
AN - SCOPUS:85122525190
SN - 0956-5663
VL - 201
JO - Biosensors and Bioelectronics
JF - Biosensors and Bioelectronics
M1 - 113977
ER -