TY - JOUR
T1 - Regulation of c-myc gene by nitric oxide via inactivating NF-κB complex in P19 mouse embryonal carcinoma cells
AU - Park, Sung Wook
AU - Wei, Li Na
PY - 2003/8/8
Y1 - 2003/8/8
N2 - Nitric oxide (NO) may regulate gene expression by directly modifying redox state-sensitive residues of transcription factors. Here we show that the NO donor, sodium nitroprusside (SNP), rapidly represses c-myc gene transcription in a protein synthesis-independent manner in P19 embryonal carcinoma cells by inactivation of NF-κB. SNP treatment reduces the DNA binding ability of the constitutively active NF-κB heterodimer, p65/p50, and its consequent transactivation of the c-myc promoter. Repression can be blocked by the peroxynitrite scavenger, deferoxamine, but not by dithiothreitol, which triggers reduction of S-nitrosylated residues. In HEK293 cells, where tumor necrosis factor-α can activate NF-κB, SNP likewise suppresses the binding of the active NF-κB complex, restoring the binding of the repressive p50/p50 homodimer complex. This effect of SNP in HEK293 cells is also blocked by deferoxamine. Chromatin immunoprecipitation analysis of SNP-treated P19 cells reveals reduced association of p65, but not of p50, with the promoter region of the endogenous c-myc gene. SNP-induced p65 dissociation was associated with the recruitment of histone deacetylase 1 and 2 to the endogenous c-myc gene promoter and the subsequent deacetylation of its chromatin histone. This study is the first to demonstrate that NO modulates the transcriptional activity of the c-myc gene promoter by dissociating the active form of NF-κB and replacing it with a repressive NF-κB complex, correlated with the recruitment of gene-silencing histone deacetylases. In light of findings that NF-κB stimulates Myc oncoprotein expression in cancers, our findings suggest that NO should be investigated as a prospective therapeutic cancer agent.
AB - Nitric oxide (NO) may regulate gene expression by directly modifying redox state-sensitive residues of transcription factors. Here we show that the NO donor, sodium nitroprusside (SNP), rapidly represses c-myc gene transcription in a protein synthesis-independent manner in P19 embryonal carcinoma cells by inactivation of NF-κB. SNP treatment reduces the DNA binding ability of the constitutively active NF-κB heterodimer, p65/p50, and its consequent transactivation of the c-myc promoter. Repression can be blocked by the peroxynitrite scavenger, deferoxamine, but not by dithiothreitol, which triggers reduction of S-nitrosylated residues. In HEK293 cells, where tumor necrosis factor-α can activate NF-κB, SNP likewise suppresses the binding of the active NF-κB complex, restoring the binding of the repressive p50/p50 homodimer complex. This effect of SNP in HEK293 cells is also blocked by deferoxamine. Chromatin immunoprecipitation analysis of SNP-treated P19 cells reveals reduced association of p65, but not of p50, with the promoter region of the endogenous c-myc gene. SNP-induced p65 dissociation was associated with the recruitment of histone deacetylase 1 and 2 to the endogenous c-myc gene promoter and the subsequent deacetylation of its chromatin histone. This study is the first to demonstrate that NO modulates the transcriptional activity of the c-myc gene promoter by dissociating the active form of NF-κB and replacing it with a repressive NF-κB complex, correlated with the recruitment of gene-silencing histone deacetylases. In light of findings that NF-κB stimulates Myc oncoprotein expression in cancers, our findings suggest that NO should be investigated as a prospective therapeutic cancer agent.
UR - http://www.scopus.com/inward/record.url?scp=0042531724&partnerID=8YFLogxK
U2 - 10.1074/jbc.M303306200
DO - 10.1074/jbc.M303306200
M3 - 文章
C2 - 12783888
AN - SCOPUS:0042531724
SN - 0021-9258
VL - 278
SP - 29776
EP - 29782
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 32
ER -