Abstract
Herpes simplex virus (HSV) pneumonia is a serious and often fatal respiratory tract infection that occurs in immunocompromised individuals. The early detection of accurate risk stratification is essential in identifying patients who are at high risk of mortality and may benefit from more aggressive treatment. In this study, we developed and validated a risk stratification model for HSV bronchopneumonia using an elastic net penalized Cox proportional hazard algorithm. We analyzed data from a cohort of 104 critically ill patients with HSV bronchopneumonia identified in Chang Gung Memorial Hospital, Linkou, Taiwan: one of the largest tertiary medical centers in the world. A total of 109 predictors, both clinical and laboratory, were identified in this process to develop a risk stratification model that could accurately predict mortality in patients with HSV bronchopneumonia. This model was able to differentiate the risk of death and predict mortality in patients with HSV bronchopneumonia compared to the APACHE II score in the early stage of ICU admissions. Both hazard ratio coefficient and selection frequency were used as the metrics to enhance the explainability of the informative predictors. Our findings suggest that the elastic net penalized Cox proportional hazard algorithm is a promising tool for risk stratification in patients with HSV bronchopneumonia and could be useful in identifying those at high risk of mortality.
Original language | English |
---|---|
Article number | 4489 |
Journal | Journal of Clinical Medicine |
Volume | 12 |
Issue number | 13 |
DOIs | |
State | Published - 05 07 2023 |
Bibliographical note
Publisher Copyright:© 2023 by the authors.
Keywords
- elastic net penalized Cox proportional hazard algorithm
- explainability
- herpes simplex virus
- pneumonia
- risk stratification