Scattering study of the conformational structure and aggregation behaviorof a conjugated polymer solution

Yen Cheng Li, Chun Yu Chen, Ying Xun Chang, Pei Ying Chuang, Jean Hong Chen, Hsin Lung Chen, Chain Shu Hsu, Viktor A. Ivanov, Pavel G. Khalatur, Show An Chen

Research output: Contribution to journalJournal Article peer-review

51 Scopus citations


The conformational structure and the interchain aggregation behavior of a semirigid conjugated polymer bearing a decyl side chain, poly(2,3-diphenyl-5- decyl-l,4-phenylenevinylene) (DPlO-PPV), in solutions with chloroform and toluene have been investigated by means of small-angle neutron scattering (SANS), static light scattering (SLS) and dynamic light scattering (DLS). The radius of gyration, persistence length, and the second virial coefficient of the polymer in dilute solution as determined by SLS were higher in chloroform than in toluene; consequently, the polymer assumed a more extended wormlike chain conformation in the former. The difference in the strength of interaction in the two solvents gave rise to contrasting aggregation behavior of the polymer in the semidilute regime. While only a minor fraction of the polymer underwent segmental association in chloroform, a considerable fraction of it formed clusters (microgels) with several micrometers in size in toluene. These clusters were further found to consist of sheetlike nanodomains. Compared with the DP-PPV bearing a shorter hexyl side chain, DP6-PPV, the aggregates of DPlO-PPV in toluene were weaker as they could be easily disrupted by moderate heating. This was attributed to a lack of strong π-π interaction between the DPlO-PPV segments due to the greater steric hindrance imposed by the longer decyl side chains.

Original languageEnglish
Pages (from-to)4668-4677
Number of pages10
Issue number8
StatePublished - 21 04 2009
Externally publishedYes


Dive into the research topics of 'Scattering study of the conformational structure and aggregation behaviorof a conjugated polymer solution'. Together they form a unique fingerprint.

Cite this