Abstract
In this study, highly hydrophilic and photoluminescent sheets of reduced graphene oxide decorated with carbon dots (C-dots@RGO), methylene blue (MB), and a probe DNA have been used for the detection of DNA. The photoluminescence of C-dots@RGO is quenched by MB, which is restored in the presence of a target DNA. The combination of the C-dots@RGO, MB, and a DNA probe is selective for perfectly matched DNA over mismatched DNA, mainly because relative to single-stranded DNA, double-stranded DNA intercalates more strongly with MB, but interacts more weakly with RGO. In the presence of a target DNA, MB intercalates with the as-formed double-stranded DNA and is released from the surface of C-dots@RGO, leading to "turn-on" photoluminescence. The practicality of this assay has been validated by the determination of tumor suppressor gene BRCA1, with linearity over the concentration range from 25 to 250 nM and a limit of detection (LOD, at a signal-to-noise ratio of 3) of 14.6 nM. The C-dots@RGO probe provides higher specificity towards target DNA than towards common salts, carbohydrates, amino acids, and proteins found in real samples. Having the advantages of simplicity, cost-effectiveness, selectivity, and sensitivity, the DNA-P/C-dots@RGO-MB probe on microwells has been successfully employed for the detection of DNA, suggesting its potential for multiple analyses of DNA targets when various DNA probes are employed.
Original language | English |
---|---|
Pages (from-to) | 6917-6923 |
Number of pages | 7 |
Journal | Analytical and Bioanalytical Chemistry |
Volume | 406 |
Issue number | 27 |
DOIs | |
State | Published - 11 2014 |
Externally published | Yes |
Bibliographical note
Publisher Copyright:© Springer-Verlag 2014.
Keywords
- Biosensor
- Carbon dots
- DNA analysis
- Photoluminescent
- Reduced graphene oxide