TY - JOUR
T1 - Solution structure and phospho-PmrA recognition mode of PmrD from Klebsiella pneumoniae
AU - Luo, Shih Chi
AU - Lou, Yuan Chao
AU - Cheng, Hsin Yao
AU - Pan, Yun Ru
AU - Peng, Hwei Ling
AU - Chen, Chinpan
PY - 2010/12
Y1 - 2010/12
N2 - In bacteria, the two-component system (TCS) is the most prevalent for sensing and transducing the environmental signals into the cell. In Salmonella, the small basic protein PmrD is found to protect phospho-PmrA and prolong the expression of PmrA-activated genes. In contrast, Escherichia coli PmrD fails to protect phospho-PmrA. Here, we show that Klebsiella pneumoniae PmrD (KP-PmrD) can inhibit the dephosphrylation of phospho-PmrA, and the interaction between KP-PmrD and the N-terminal receiver domain of PmrA (PmrAN) is much stronger in the presence than in the absence of the phosphoryl analog beryllofluoride (BeF3-) (KD=1.74±0.81μM vs. KD=236±48μM). To better understand the molecular interactions involved, the solution structure of KP-PmrD was found to comprise six β-strands and a flexible C-terminal α-helix. Amide chemical shift perturbations of KP-PmrD in complex with BeF3--activated PmrAN suggested that KP-PmrD may undergo a certain conformational rearrangement on binding to activated PmrAN. Saturation transfer experiments revealed the binding surface to be located on one face of the β-barrel. This finding was further verified by in vivo polymyxin B susceptibility assay of the mutants of KP-PmrD. The phospho-PmrA recognition surface of KP-PmrD, which involves two KP-PmrD proteins in complex with an activated-PmrAN dimer, is suggested to be a contiguous patch consisting of Trp3, Trp4, Ser23, Leu26, Glu27, Met28, Thr46, Leu48, Ala49, Asp50, Ala51, Arg52, Ile65, Asn67, Ala68, Thr69, His70, Tyr71, Ser73 and Glu74. Our study furthers the understanding of how PmrD protects phopho-PmrA in the PmrAB TCS.
AB - In bacteria, the two-component system (TCS) is the most prevalent for sensing and transducing the environmental signals into the cell. In Salmonella, the small basic protein PmrD is found to protect phospho-PmrA and prolong the expression of PmrA-activated genes. In contrast, Escherichia coli PmrD fails to protect phospho-PmrA. Here, we show that Klebsiella pneumoniae PmrD (KP-PmrD) can inhibit the dephosphrylation of phospho-PmrA, and the interaction between KP-PmrD and the N-terminal receiver domain of PmrA (PmrAN) is much stronger in the presence than in the absence of the phosphoryl analog beryllofluoride (BeF3-) (KD=1.74±0.81μM vs. KD=236±48μM). To better understand the molecular interactions involved, the solution structure of KP-PmrD was found to comprise six β-strands and a flexible C-terminal α-helix. Amide chemical shift perturbations of KP-PmrD in complex with BeF3--activated PmrAN suggested that KP-PmrD may undergo a certain conformational rearrangement on binding to activated PmrAN. Saturation transfer experiments revealed the binding surface to be located on one face of the β-barrel. This finding was further verified by in vivo polymyxin B susceptibility assay of the mutants of KP-PmrD. The phospho-PmrA recognition surface of KP-PmrD, which involves two KP-PmrD proteins in complex with an activated-PmrAN dimer, is suggested to be a contiguous patch consisting of Trp3, Trp4, Ser23, Leu26, Glu27, Met28, Thr46, Leu48, Ala49, Asp50, Ala51, Arg52, Ile65, Asn67, Ala68, Thr69, His70, Tyr71, Ser73 and Glu74. Our study furthers the understanding of how PmrD protects phopho-PmrA in the PmrAB TCS.
KW - BeF3- activation
KW - Chemical shift perturbation
KW - NMR
KW - PmrD connector protein
KW - SPR
KW - Saturation transfer
UR - http://www.scopus.com/inward/record.url?scp=77958181559&partnerID=8YFLogxK
U2 - 10.1016/j.jsb.2010.06.007
DO - 10.1016/j.jsb.2010.06.007
M3 - 文章
C2 - 20538060
AN - SCOPUS:77958181559
SN - 1047-8477
VL - 172
SP - 319
EP - 330
JO - Journal of Structural Biology
JF - Journal of Structural Biology
IS - 3
ER -