Abstract
Electrospun polyacrylonitrile (PAN)-based carbon nanofibers (CNFs) with high surface area have been of promising interest because of their potential for applications in various fields, especially energy devices. In this study, PAN nanofibers with porous and ultrafine nanofiber structures were prepared by electrospinning PAN/poly(vinyl pyrrolidone) (PVP) immiscible solutions and then selectively removing the PVP component from the electrospun PAN/PVP bicomponent nanofibers. The chemical reaction and microstructure of the PAN fibers with porous and ultrafine nanofibril structures in the stabilization process were investigated. The results revealed the effects of PAN fibers with porous and ultrafine nanofibril structures on the crosslinking reaction, microstructure, and morphology during the stabilization process. According to the in situ Fourier transform infrared spectroscopy results, the intermolecular and intramolecular reactions of the nitrile group for the PAN fibers with ultrafine nanofibril structures exhibited slower reaction rates than those for the neat PAN fibers during stepwise and isothermal heating. Selecting a good stabilization temperature for ultrafine PAN-crosslinked nanofibrils can enhance the surface area and carbonized structure of CNFs. The possible applications of CNFs with porous and ultrafine nanofibril structures in supercapacitors were also evaluated.
Original language | English |
---|---|
Article number | 48218 |
Journal | Journal of Applied Polymer Science |
Volume | 136 |
Issue number | 46 |
DOIs | |
State | Published - 10 12 2019 |
Bibliographical note
Publisher Copyright:© 2019 Wiley Periodicals, Inc.
Keywords
- carbon nanofiber
- electrode
- electrospinning
- polyacrylonitrile
- stabilization
- ultrafine nanofibril