Sustained Release of Tacrolimus Embedded in a Mixed Thermosensitive Hydrogel for Improving Functional Recovery of Injured Peripheral Nerves in Extremities

Aline Yen Ling Wang*, Kuan Hung Chen, Hsiu Chao Lin, Charles Yuen Yung Loh, Yun Ching Chang, Ana Elena Aviña, Chin Ming Lee, I. Ming Chu, Fu Chan Wei*

*Corresponding author for this work

Research output: Contribution to journalJournal Article peer-review

5 Scopus citations

Abstract

Vascularized composite allotransplantation is an emerging strategy for the reconstruction of unique defects such as amputated limbs that cannot be repaired with autologous tissues. In order to ensure the function of transplanted limbs, the functional recovery of the anastomosed peripheral nerves must be confirmed. The immunosuppressive drug, tacrolimus, has been reported to promote nerve recovery in animal models. However, its repeated dosing comes with risks of systemic malignancies and opportunistic infections. Therefore, drug delivery approaches for locally sustained release can be designed to overcome this issue and reduce systemic complications. We developed a mixed thermosensitive hydrogel (poloxamer (PLX)-poly(l-alanine-lysine with Pluronic F-127) for the time-dependent sustained release of tacrolimus in our previous study. In this study, we demonstrated that the hydrogel drug degraded in a sustained manner and locally released tacrolimus in mice over one month without affecting the systemic immunity. The hydrogel drug significantly improved the functional recovery of injured sciatic nerves as assessed using five-toe spread and video gait analysis. Neuroregeneration was validated in hydrogel–drug-treated mice using axonal analysis. The hydrogel drug did not cause adverse effects in the mouse model during long-term follow-up. The local injection of encapsulated-tacrolimus mixed thermosensitive hydrogel accelerated peripheral nerve recovery without systemic adverse effects.

Original languageEnglish
Article number508
JournalPharmaceutics
Volume15
Issue number2
DOIs
StatePublished - 03 02 2023

Bibliographical note

Publisher Copyright:
© 2023 by the authors.

Keywords

  • mixed thermosensitive hydrogel
  • nerve regeneration
  • sciatic nerve
  • sustained release
  • tacrolimus

Fingerprint

Dive into the research topics of 'Sustained Release of Tacrolimus Embedded in a Mixed Thermosensitive Hydrogel for Improving Functional Recovery of Injured Peripheral Nerves in Extremities'. Together they form a unique fingerprint.

Cite this