Abstract
Several thalidomide derivatives were synthesized and evaluated for their anti-inflammatory activity. Introduction of the benzyl group to the parent thalidomide is unfavorable in which 2-(1-benzyl-2,6-dioxopiperidin-3-yl)isoindoline-1,3-dione (4a) was inactivated. However, the inhibitory activities on TNF-α and IL-6 expression in HaCaT cells were improved by the substitution of a chloro-or methoxy-group at the phenyl position of 4a. The IL-6 inhibitory activity decreased in an order of 5c (69.44%) > 4c (48.73%) > 6c (3.19%) indicating the 3-substituted derivative is more active than the 4-substituted counterpart, which in turn is more active than the 2-substituted counterpart. Among them, 2-[1-(3-chlorobenzyl)-2,6-dioxopiperidin-3-yl]isoindoline-1,3-dione (5c) was found to inhibit TNF-α and IL-6 expression in HaCaT cells with a higher potency than thalidomide and no significant cell cytotoxicity was detected at 10 µM. In psoriasis, Compound 5c reduced IL-6, IL-8, IL-1β and IL-24 in imiquimod-stimulated models. Our results indicated that compound 5c is a potential lead of novel anti-psoriasis agents. Structural optimization of compound 5c and its in vivo assay are ongoing.
Original language | English |
---|---|
Article number | 3061 |
Journal | International Journal of Molecular Sciences |
Volume | 19 |
Issue number | 10 |
DOIs | |
State | Published - 2018 |
Bibliographical note
Publisher Copyright:© 2018 by the authors. Licensee MDPI, Basel, Switzerland.
Keywords
- Anti-inflammatory
- Anti-proliferative
- Psoriasis
- Thalidomide
- Tumor necrosis factor