Targeting miR-181a/b in retinitis pigmentosa: implications for disease progression and therapy

Bruna Lopes da Costa, Peter M.J. Quinn, Wen Hsuan Wu, Siyuan Liu, Nicholas D. Nolan, Aykut Demirkol, Yi Ting Tsai, Salvatore Marco Caruso, Thiago Cabral, Nan Kai Wang, Stephen H. Tsang*

*Corresponding author for this work

Research output: Contribution to journalJournal Article peer-review

Abstract

BACKGROUND: Retinitis pigmentosa (RP) is a genetically heterogeneous group of degenerative disorders causing progressive vision loss due to photoreceptor death. RP affects other retinal cells, including the retinal pigment epithelium (RPE). MicroRNAs (miRs) are implicated in RP pathogenesis, and downregulating miR-181a/b has shown therapeutic benefit in RP mouse models by improving mitochondrial function. This study investigates the expression profile of miR-181a/b in RPE cells and the neural retina during RP disease progression. We also evaluate how miR-181a/b downregulation, by knocking out miR-181a/b-1 cluster in RPE cells, confers therapeutic efficacy in an RP mouse model and explore the mechanisms underlying this process.

RESULTS: Our findings reveal distinct expression profiles, with downregulated miR-181a/b in RPE cells suggesting a protective response and upregulated miR-181a/b in the neural retina indicating a role in disease progression. We found that miR-181a/b-2, encoded in a separate genomic cluster, compensates for miR-181a/b-1 ablation in RPE cells at late time points. The transient downregulation of miR-181a/b in RPE cells at post-natal week 6 (PW6) led to improved RPE morphology, retarded photoreceptor degeneration and decreased RPE aerobic glycolysis.

CONCLUSIONS: Our study elucidates the underlying mechanisms associated with the therapeutic modulation of miR-181a/b, providing insights into the metabolic processes linked to its RPE-specific downregulation. Our data further highlights the impact of compensatory regulation between miR clusters with implications for the development of miR-based therapeutics.

Original languageEnglish
Article number64
Pages (from-to)64
JournalCell and Bioscience
Volume14
Issue number1
DOIs
StatePublished - 21 05 2024
Externally publishedYes

Bibliographical note

© 2024. The Author(s).

Keywords

  • Aerobic glycolysis
  • Metabolic reprogramming
  • MicroRNAs
  • Retinal pigment epithelium
  • Retinitis pigmentosa

Fingerprint

Dive into the research topics of 'Targeting miR-181a/b in retinitis pigmentosa: implications for disease progression and therapy'. Together they form a unique fingerprint.

Cite this